Abstract

A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Wu, E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006).
    [CrossRef] [PubMed]
  2. Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
    [CrossRef]
  3. B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic fiber-optic transmission using coherent spectral-phase-encoded optical CDMA,” in Proceeding CLEO/QELS, (Optical Society of America, 2008), Paper CEF5.
    [CrossRef]
  4. M. P. Fok, P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
    [CrossRef]
  5. M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
    [CrossRef]
  6. Z. Wang, P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
    [CrossRef]
  7. B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
    [CrossRef] [PubMed]
  8. B. Wu, Z. Wang, B. J. Shastri, Y. Tian, and P. R. Prucnal, “Two dimensional encrypted optical steganography based on amplified spontaneous emission noise,” in Proceeding CLEO, (Optical Society of America, 2013), paper AF1H.5.
    [CrossRef]
  9. B. Akhgar and H. R. Arabnia, Emerging Trends in Information and Communication Technologies Security (Elsevier, 2013) (to be published).
  10. J. M. Castro, I. B. Djordjevic, D. F. Geraghty, “Novel super structured Bragg gratings for optical encryption,” J. Lightwave Technol. 24(4), 1875–1885 (2006).
    [CrossRef]
  11. K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
    [CrossRef]
  12. Z. Wang, M. P. Fok, L. Xu, J. Chang, P. R. Prucnal, “Improving the privacy of optical steganography with temporal phase masks,” Opt. Express 18(6), 6079–6088 (2010).
    [CrossRef] [PubMed]
  13. B. Wu, Z. Wang, B. J. Shastri, Y. Tian, and P. R. Prucnal, “Phase-mask covered optical steganography based on amplified spontaneous emission noise,” in Proceedings of IEEE Photonics Conference (Institute of Electrical and Electronics Engineering, Bellevue, Washington, 2013), paper MG3.3.
    [CrossRef]

2013 (1)

2011 (2)

M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[CrossRef]

Z. Wang, P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[CrossRef]

2010 (1)

2009 (1)

M. P. Fok, P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

2007 (1)

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

2006 (2)

2004 (1)

K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[CrossRef]

Castro, J. M.

Chan, C. K.

K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[CrossRef]

Chan, K.

K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[CrossRef]

Chang, J.

Chen, L. K.

K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[CrossRef]

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[CrossRef]

Djordjevic, I. B.

Fok, M. P.

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[CrossRef] [PubMed]

M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[CrossRef]

Z. Wang, M. P. Fok, L. Xu, J. Chang, P. R. Prucnal, “Improving the privacy of optical steganography with temporal phase masks,” Opt. Express 18(6), 6079–6088 (2010).
[CrossRef] [PubMed]

M. P. Fok, P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

Geraghty, D. F.

Glesk, I.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Huang, Y.-K.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Kanoff, D. R.

Narimanov, E. E.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

B. B. Wu, E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006).
[CrossRef] [PubMed]

Prucnal, P. R.

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[CrossRef] [PubMed]

M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[CrossRef]

Z. Wang, P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[CrossRef]

Z. Wang, M. P. Fok, L. Xu, J. Chang, P. R. Prucnal, “Improving the privacy of optical steganography with temporal phase masks,” Opt. Express 18(6), 6079–6088 (2010).
[CrossRef] [PubMed]

M. P. Fok, P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Shastri, B. J.

Tian, Y.

Tong, F.

K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[CrossRef]

Wang, T.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Wang, Z.

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[CrossRef] [PubMed]

Z. Wang, P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[CrossRef]

M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[CrossRef]

Z. Wang, M. P. Fok, L. Xu, J. Chang, P. R. Prucnal, “Improving the privacy of optical steganography with temporal phase masks,” Opt. Express 18(6), 6079–6088 (2010).
[CrossRef] [PubMed]

Wu, B.

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[CrossRef] [PubMed]

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Wu, B. B.

Xu, L.

Electron. Lett. (2)

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

M. P. Fok, P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Wang, P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett. 23(1), 48–50 (2011).
[CrossRef]

K. Chan, C. K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[CrossRef]

IEEE Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Other (4)

B. Wu, Z. Wang, B. J. Shastri, Y. Tian, and P. R. Prucnal, “Two dimensional encrypted optical steganography based on amplified spontaneous emission noise,” in Proceeding CLEO, (Optical Society of America, 2013), paper AF1H.5.
[CrossRef]

B. Akhgar and H. R. Arabnia, Emerging Trends in Information and Communication Technologies Security (Elsevier, 2013) (to be published).

B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic fiber-optic transmission using coherent spectral-phase-encoded optical CDMA,” in Proceeding CLEO/QELS, (Optical Society of America, 2008), Paper CEF5.
[CrossRef]

B. Wu, Z. Wang, B. J. Shastri, Y. Tian, and P. R. Prucnal, “Phase-mask covered optical steganography based on amplified spontaneous emission noise,” in Proceedings of IEEE Photonics Conference (Institute of Electrical and Electronics Engineering, Bellevue, Washington, 2013), paper MG3.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental Setup (EDFA: erbium-doped fiber amplifier; P: polarizer; ASE: amplified spontaneous emission; PM: phase modulator; PD: phase demodulator; SSMF: standard single mode fiber; DCF: dispersion compensation fiber; WDM: wavelength division multiplexer). (b) Schematic diagram of the stealth channel; only 8 chips are drawn for each bit.

Fig. 2
Fig. 2

Comparison of eye diagrams with and without phase mask recovery. (a) Phase mask code 1010101010101010 with phase mask recovery. (b) Phase mask code 1010101010101010 without phase mask recovery. (c) Phase mask code 1010100101101001 with phase mask recovery. (d) Phase mask code 1010100101101001 without phase mask recovery. (e) Eye diagram of receiving phase mask data directly.

Fig. 3
Fig. 3

(a) Eye diagram of public channel with stealth channel. (b) Eye diagram of public channel without stealth channel. (c) Spectrum of public channel with and without stealth channel.

Fig. 4
Fig. 4

(a) The number of available codes that can reduce the eye amplitude below a certain percentage. (b) Enlarged view of the region marked by red in (a); the red spots correspond to (d)-(h). (c) Eye diagram of the stealth channel without phase mask. (d) Phase mask code 1010100101101001 can reduce eye amplitude to 5% of the amplitude in (c). (e) Phase mask code 1100011001011001 can reduce eye amplitude to 10%. (f) Phase mask code 1101011001001110 can reduce eye amplitude to 15%. (g) Phase mask code 0011011010101100 can reduce eye amplitude to 20%. (h) Phase mask code 1011100010010101 can reduce eye amplitude to 25%.

Fig. 5
Fig. 5

Simulation of the stealth signal with phase mask code 1011100010010101, which is the code used in Fig. 4(h). (a) Comparison of temporal signal with and without phase mask encryption. (b) Distribution of the signal peaks in the stealth bit.

Fig. 6
Fig. 6

BER performance versus received signal power for stealth channel with and without using phase mask encryption.

Fig. 7
Fig. 7

Measurement of BER for different stealth channel data rates.

Metrics