Abstract

We report on a method to obtain dispersion measurements from spectral-domain low-coherence interferograms which enables high accuracy (≈ps/(nm·km)), broadband measurements and the determination of very dense (up to 20 points/nm over 500 nm) data sets for both dispersion and dispersion slope. The method exploits a novel phase extraction algorithm which allows the phase associated with each sampling point of the interferogram to be calculated and provides for very accurate results as well as a fast measurement capability, enabling close to real time measurements. The important issue of mitigating the measurement errors due to any residual dispersion of optical elements and to environmental fluctuations was also addressed. We performed systematic measurements on standard fibers which illustrate the accuracy and precision of the technique, and we demonstrated its general applicability to challenging problems by measuring a carefully selected set of microstructured fibers: a lead silicate W-type fiber with a flat, near-zero dispersion profile; a hollow core photonic bandgap fiber with strongly wavelength dependent dispersion and dispersion slope; a small core, highly birefringent index guiding microstructured fiber, for which polarization resolved measurements over an exceptionally wide (≈1000 nm) wavelength interval were obtained.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [CrossRef]
  2. A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
    [CrossRef] [PubMed]
  3. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [CrossRef] [PubMed]
  4. V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
    [CrossRef]
  5. M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
    [CrossRef]
  6. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:.
    [CrossRef]
  7. C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
    [CrossRef]
  8. B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983).
    [CrossRef]
  9. P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987).
    [CrossRef]
  10. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
    [CrossRef]
  11. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quant. Electron. 17(3), 404–407 (1981). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1071115&isnumber=23019
    [CrossRef]
  12. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4245900&isnumber=4245884 .
    [CrossRef]
  13. J. Jasapara, T. H. Her, R. Bise, R. Windeler, D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20(8), 1611–1615 (2003).
    [CrossRef]
  14. J. Stone, L. G. Cohen, “Minimum-dispersion spectra of single-mode fibers measured with subpicosecond resolution by white-light cross-correlation,” Electron. Lett. 18(16), 716–718 (1982).
    [CrossRef]
  15. P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 .
    [CrossRef]
  16. G. M. Ponzo, M. N. Petrovich, X. Feng, P. Horak, F. Poletti, P. Petropoulos, and D. J. Richardson, “Fast and broadband fiber dispersion measurement with dense wavelength sampling,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), 22–26 Sept. 2013, paper We.1.A.2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6647576&isnumber=6647462
  17. G. M. Ponzo, “Broadband Characterisation of single and multimode microstructured optical fibres,” Ph.D. Thesis, University of Southampton, Southampton, UK (2013), Chapter 3.
  18. M. A. Ettabib, L. Jones, J. Kakande, R. Slavík, F. Parmigiani, X. Feng, F. Poletti, G. M. Ponzo, J. D. Shi, M. N. Petrovich, W. H. Loh, P. Petropoulos, D. J. Richardson, “Phase sensitive amplification in a highly nonlinear lead-silicate fiber,” Opt. Express 20(2), 1629–1634 (2012).
    [CrossRef] [PubMed]
  19. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, W. H. Loh, D. Richardson, and P. Petropoulos, “160-to-40Gibt/s time demultiplexing in a low dispersion lead-silicate W-index profile fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThS6.
    [CrossRef]
  20. G. M. Ponzo, X. Feng, P. Horak, F. Poletti, M. N. Petrovich, W. H. Loh, and D. Richardson, “Flat, broadband supercontinuum generation at low pulse energies in a dispersion-tailored lead-silicate fibre,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.09.
    [CrossRef]
  21. G. Bouwmans, F. Luan, J. C. Knight, P. St J Russell, L. Farr, B. J. Mangan, H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11(14), 1613–1620 (2003).
    [CrossRef] [PubMed]
  22. M. N. Petrovich, F. Poletti, A. van Brakel, D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
    [CrossRef] [PubMed]

2012

2011

V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[CrossRef]

2010

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:.
[CrossRef]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
[CrossRef]

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

2008

2003

1999

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

1989

P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 .
[CrossRef]

1987

P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987).
[CrossRef]

1986

1983

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983).
[CrossRef]

1982

J. Stone, L. G. Cohen, “Minimum-dispersion spectra of single-mode fibers measured with subpicosecond resolution by white-light cross-correlation,” Electron. Lett. 18(16), 716–718 (1982).
[CrossRef]

1981

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4245900&isnumber=4245884 .
[CrossRef]

Aguergaray, C.

V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[CrossRef]

Alard, F.

P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987).
[CrossRef]

Birks, T. A.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Bise, R.

Bouwmans, G.

Camerlingo, A.

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:.
[CrossRef]

Cohen, L. G.

J. Stone, L. G. Cohen, “Minimum-dispersion spectra of single-mode fibers measured with subpicosecond resolution by white-light cross-correlation,” Electron. Lett. 18(16), 716–718 (1982).
[CrossRef]

Costa, B.

B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983).
[CrossRef]

DiGiovanni, D. J.

Douay, M.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Ettabib, M. A.

Farr, L.

Feng, X.

Francois, P. L.

P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987).
[CrossRef]

Gander, M. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Gordon, J. P.

Harvey, J. D.

V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[CrossRef]

Heidt, A. M.

Her, T. H.

Horak, P.

A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010).
[CrossRef] [PubMed]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:.
[CrossRef]

Jackson, D. A.

P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 .
[CrossRef]

Jasapara, J.

Jones, J. D. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Jones, L.

Kakande, J.

Knight, J. C.

G. Bouwmans, F. Luan, J. C. Knight, P. St J Russell, L. Farr, B. J. Mangan, H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11(14), 1613–1620 (2003).
[CrossRef] [PubMed]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Kolobov, M.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Kruglov, V. I.

V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[CrossRef]

Kudlinski, A.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Lin, C.

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

Liu, P. L.

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

Loh, W. H.

Louvergneaux, E.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Luan, F.

Mangan, B. J.

McBride, R.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Merritt, P.

P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 .
[CrossRef]

Mogilevtsev, D.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Monerie, M.

P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987).
[CrossRef]

Mussot, A.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

Petrovich, M. N.

Philen, D. L.

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

Poletti, F.

Ponzo, G. M.

Puleo, M.

B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983).
[CrossRef]

Richardson, D. J.

Russell, P. S. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

Sabert, H.

Shang, H.-T.

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4245900&isnumber=4245884 .
[CrossRef]

Shi, J.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:.
[CrossRef]

Shi, J. D.

Slavík, R.

St J Russell, P.

Stone, J.

J. Stone, L. G. Cohen, “Minimum-dispersion spectra of single-mode fibers measured with subpicosecond resolution by white-light cross-correlation,” Electron. Lett. 18(16), 716–718 (1982).
[CrossRef]

Taki, M.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Tatam, R. P.

P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 .
[CrossRef]

Tomita, A.

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

Tynes, A. F.

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

van Brakel, A.

Vezzoni, E.

B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983).
[CrossRef]

Windeler, R.

Bell Syst. Tech. J.

C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983).
[CrossRef]

Electron. Lett.

B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983).
[CrossRef]

P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 .
[CrossRef]

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4245900&isnumber=4245884 .
[CrossRef]

J. Stone, L. G. Cohen, “Minimum-dispersion spectra of single-mode fibers measured with subpicosecond resolution by white-light cross-correlation,” Electron. Lett. 18(16), 716–718 (1982).
[CrossRef]

J. Lightwave Technol.

P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 .
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:.
[CrossRef]

Opt. Lett.

Phys. Lett. A

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010).
[CrossRef]

Phys. Rev. A

V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011).
[CrossRef]

Other

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quant. Electron. 17(3), 404–407 (1981). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1071115&isnumber=23019
[CrossRef]

G. M. Ponzo, M. N. Petrovich, X. Feng, P. Horak, F. Poletti, P. Petropoulos, and D. J. Richardson, “Fast and broadband fiber dispersion measurement with dense wavelength sampling,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), 22–26 Sept. 2013, paper We.1.A.2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6647576&isnumber=6647462

G. M. Ponzo, “Broadband Characterisation of single and multimode microstructured optical fibres,” Ph.D. Thesis, University of Southampton, Southampton, UK (2013), Chapter 3.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, W. H. Loh, D. Richardson, and P. Petropoulos, “160-to-40Gibt/s time demultiplexing in a low dispersion lead-silicate W-index profile fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThS6.
[CrossRef]

G. M. Ponzo, X. Feng, P. Horak, F. Poletti, M. N. Petrovich, W. H. Loh, and D. Richardson, “Flat, broadband supercontinuum generation at low pulse energies in a dispersion-tailored lead-silicate fibre,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.09.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a generic spectral domain low-coherence interferometry setup based on a Mach-Zehnder topology; (b) As-measured interferogram (trace 0) of a standard SMF using the setup described in Section 3; (c) ‘Background’ intensity normalised interferogram (trace 1) and extracted envelope (trace 2). The red dots indicate the maxima and absolute values of the minima; (d) Envelope-corrected interferogram (trace 3) and wavelength dependent phase (trace 4) calculated using Eq. (6). No polynomial smoothing (see text) was used in this instance.

Fig. 2
Fig. 2

Setup implemented for the dispersion measurement (refer to text for detailed description). BS1,2: beamsplitter cubes, M1,2: mirrors, HR1,2: hollow back-reflector, P: polarizer; λ/2: half-wave plate; S1,2: motorized beam shutters, xyz: micro-positioner stages used for input/output coupling in the fiber under test.

Fig. 3
Fig. 3

Evaluation of the measurement precision: the dispersion of a standard SMF (length 1.65 m) is calculated from interferograms obtained by setting increasing OSA scan times and (a) using an un-isolated setup or (b) placing the interferometer inside a hermetic enclosure. The effect of environmental disturbances is very obvious in the first set of plots (a), while it is almost completely removed in the second (b). The insert of (b) shows a magnification around the ZDW of the SMF at ≈1300 nm illustrating the excellent consistency between the various dispersion curves measured using increasing scan times.

Fig. 4
Fig. 4

Evaluation of the accuracy of the technique on a standard single mode fiber (SMF). (a) Measured refractive index profile of the SMF; (b) measured and simulated dispersion, (c) measured and simulated dispersion slope. The sample length is 1.65 m.

Fig. 5
Fig. 5

Dispersion measurement results for three different types of microstructured optical fibers: (a) Highly nonlinear lead silicate fiber with W-type index profile: interferograms measured for two fibers with slightly different core diameters (1.62 µm and 1.69 µm for fiber A and B, respectively); (b) Corresponding calculated dispersion curves (samples were 1.3 m and 1.35 m long, respectively). Inset shows SEM images of fiber A; (c) Hollow-core bandgap fiber with a 7 cell core structure (sample length: 2.5 m); (d) highly birefringent index-guiding microstructured fiber: polarization resolved measurements (sample length: 1.7 m).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(λ)= I F (λ)+ I R (λ)+2V(λ) I F (λ) I R (λ) cos[ϕ(λ)]
V(λ)= sinc[ R OSA (λ) 2π dϕ(λ) dλ ]
ϕ(λ)= β F (λ)L2πd/λ
ϕ(λ)= ϕ 0 + ϕ 1 (λ λ 0 )+ ϕ 2 (λ λ 0 ) 2 + ϕ 3 (λ λ 0 ) 3 +
I N (λ)=  I(λ) I F (λ) I R (λ) 2 I F (λ) I R (λ) =V(λ)cos[ϕ(λ)]
ϕ(λ)= cos 1 [ I N (λ)  V(λ)  ]
D(λ)= 1 L d τ g (λ) dλ = d dλ [ λ 2 2πc d β F (λ) dλ ]= 1 2πcL [ 2λ dϕ(λ) dλ + λ 2 d 2 ϕ(λ) d λ 2 ]

Metrics