Abstract

We have investigated absorption losses due to surface water adsorbed on the surface of silicon heterostructure nanocavities with quality (Q) factors of several million. Measurements performed while changing the ambient humidity that the nanocavity is exposed to show that the Q value depends linearly on humidity. We also reveal that chemical treatment to change the degree of hydrophilicity of the surface results in a drastic increase of Q; we have obtained an experimental value of 9 million, which represents a new record for a heterostructure nanocavity. We analytically determine the absolute value of absorption loss by exploiting the degree of fluctuation of Q values between different samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
    [CrossRef]
  3. Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  5. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [CrossRef]
  6. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [CrossRef] [PubMed]
  7. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
    [CrossRef] [PubMed]
  8. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
    [CrossRef] [PubMed]
  9. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
    [CrossRef] [PubMed]
  10. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
    [CrossRef]
  11. M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99(10), 1768–1779 (2011).
    [CrossRef]
  12. M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [CrossRef]
  13. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
    [CrossRef]
  14. J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
    [CrossRef] [PubMed]
  15. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
    [CrossRef]
  16. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [CrossRef] [PubMed]
  17. T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
    [CrossRef] [PubMed]
  18. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
    [CrossRef]
  19. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  20. Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
    [CrossRef]
  21. H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
    [CrossRef]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [CrossRef]
  23. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [CrossRef] [PubMed]
  24. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
    [CrossRef]
  25. T. Nakamura, T. Asano, and S. Noda, “How to design higher-Q photonic crystal nanocavity,” in Spring Meeting Jpn Soc. Appl. Phys. (2011), Abstract 26p-KA-8.
  26. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Water (H20),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1991), vol. 2.
  27. T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001).
    [CrossRef]
  28. S. Mizushima, “Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement,” Metrologia 41(3), 137–144 (2004).
    [CrossRef]
  29. A. L. McClellan, H. F. Harnsberger, “Cross-sectional areas of molecules adsorbed on solid surfaces,” J. Colloid Interface Sci. 23(4), 577–599 (1967).
    [CrossRef]
  30. M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
    [CrossRef]
  31. M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
    [CrossRef]

2013 (1)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

2012 (3)

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[CrossRef]

2011 (3)

2010 (3)

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

2009 (4)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
[CrossRef]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

2008 (2)

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

2007 (1)

2006 (3)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

2005 (1)

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

2004 (2)

S. Mizushima, “Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement,” Metrologia 41(3), 137–144 (2004).
[CrossRef]

H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2001 (1)

T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1996 (1)

1967 (1)

A. L. McClellan, H. F. Harnsberger, “Cross-sectional areas of molecules adsorbed on solid surfaces,” J. Colloid Interface Sci. 23(4), 577–599 (1967).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Anpo, M.

M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
[CrossRef]

Asano, T.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[CrossRef]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Borselli, M.

M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Boucaud, P.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Checoury, X.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Coluccia, S.

M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
[CrossRef]

David, S.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

El Kurdi, M.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Gorodetsky, M. L.

Hagino, H.

Han, Z.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Harnsberger, H. F.

A. L. McClellan, H. F. Harnsberger, “Cross-sectional areas of molecules adsorbed on solid surfaces,” J. Colloid Interface Sci. 23(4), 577–599 (1967).
[CrossRef]

Ilchenko, V. S.

Imada, M.

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Ji, Z.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Johnson, T. J.

M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Kawamoto, Y.

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Kuramochi, E.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Liu, J.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Martra, G.

M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
[CrossRef]

McClellan, A. L.

A. L. McClellan, H. F. Harnsberger, “Cross-sectional areas of molecules adsorbed on solid surfaces,” J. Colloid Interface Sci. 23(4), 577–599 (1967).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Mizushima, S.

S. Mizushima, “Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement,” Metrologia 41(3), 137–144 (2004).
[CrossRef]

Nakamura, T.

Néel, D.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Noda, S.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[CrossRef]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99(10), 1768–1779 (2011).
[CrossRef]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Painter, O.

M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Roh, Y. G.

Rokhsari, H.

H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

Sakaue, H.

T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001).
[CrossRef]

Sato, Y.

Savchenkov, A. A.

Shingubara, S.

T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001).
[CrossRef]

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Song, B. S.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

Spillane, S. M.

H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

Sugiya, T.

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

Taguchi, Y.

Takahagi, T.

T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001).
[CrossRef]

Takahashi, Y.

Takeuchi, M.

M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
[CrossRef]

Tanabe, T.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Tanaka, Y.

Taniyama, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Upham, J.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[CrossRef]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

Vahala, K. J.

H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Xiong, J. J.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Xue, C. Y.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Yan, S. B.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Yan, Y. Z.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Zhang, W. D.

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Appl. Phys. Lett. (7)

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[CrossRef]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

J. Colloid Interface Sci. (1)

A. L. McClellan, H. F. Harnsberger, “Cross-sectional areas of molecules adsorbed on solid surfaces,” J. Colloid Interface Sci. 23(4), 577–599 (1967).
[CrossRef]

J. Near Infrared Spectrosc. (1)

M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001).
[CrossRef]

Metrologia (1)

S. Mizushima, “Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement,” Metrologia 41(3), 137–144 (2004).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nat. Photonics (2)

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[CrossRef]

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Nature (3)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[CrossRef]

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[CrossRef]

Opt. Express (7)

T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Proc. IEEE (1)

M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99(10), 1768–1779 (2011).
[CrossRef]

Other (2)

T. Nakamura, T. Asano, and S. Noda, “How to design higher-Q photonic crystal nanocavity,” in Spring Meeting Jpn Soc. Appl. Phys. (2011), Abstract 26p-KA-8.

M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Water (H20),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1991), vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Improvements in Qdes (squares) and Qexp (triangles) for major types of nanocavities (left-hand axis). The right-hand axis shows the optical loss 1/Qexp, split into its components 1/Qdes and 1/Qimp.

Fig. 2
Fig. 2

(a) Schematic picture of the nanocavity studied here, created by a two-step heterostructure. The positions of the colored air holes are shifted with respect to those in the main PC lattice. (b) Experimental setup for time-domain measurements. SMF: single mode fiber. MMF: multi mode fiber. EOM: electro-optical modulator. OL: objective lens.

Fig. 3
Fig. 3

Humidity dependence of imperfection loss (1/Qimp) of a nanocavity. The dashed line is a linear fit to the measured data. The inset shows a model for the adsorption of surface water.

Fig. 4
Fig. 4

(a) Calculated contour map of the appearance frequency of scattering loss as a function of σhole. The white arrow shows the experimental S.D.(1/Qimp) before chemical treatment. Schematic views on the right show variation in the air hole radius (dr) and position (dx, and dy). (b) Breakdown of average 1/Qexp before and after removing the surface SiOx layer. The numbers on the bars indicate the magnitudes of each type of loss. The schematic picture on the right shows the DHF treatment process.

Fig. 5
Fig. 5

Time-resolved signals for input pulsed light (black) with a width of 10 ns and for the nanocavity (red) that showed the longest photon lifetime of 7.54 ns. Similar signals for the previous nanocavities are seen in [6,7].

Tables (2)

Tables Icon

Table 1 Summary of measurements of the humidity dependence of Qexp. Experiments were carried out in chronological order from left to right with a waiting time of 30 minutes between each.

Tables Icon

Table 2 Summary of statistical measurements on nine nanocavities before and after DHF treatment. Three cavities were not measured after the process. The labels Avg. and S.D. refer to the average and standard deviation, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 Q exp = 1 Q des + 1 Q imp .
1 Q imp = 1 Q scat + 1 Q abs .
1 Q abs = αη λ cav 2πn ,
Avg.( 1/ Q scat )=7.47× 10 7 × σ hole 2 .
S.D.( 1/ Q scat )=2.98× 10 7 × σ hole 2 .

Metrics