Abstract

We developed a planar-type graphene-based plasmonic photodetector (PD) for the development of all-graphene photonic-integrated-circuits (PICs). By configuring the graphene plasmonic waveguide and PD structure all-in-one, the proposed graphene PD detects horizontally incident light. The photocurrent profile with opposite polarity is the maximum at graphene-electrode interfaces due to a Schottky-like barrier effect at the interface. The photocurrent amplitude increases with an increase of the graphene-metal interface length. Obtaining time constants of less than 39.7 ms for the time response, we concluded that the proposed graphene PD could be exploited further for application in all graphene-based PICs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]
  2. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [CrossRef] [PubMed]
  3. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [CrossRef]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [CrossRef] [PubMed]
  5. T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [CrossRef]
  6. K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
    [CrossRef] [PubMed]
  7. J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
    [CrossRef] [PubMed]
  8. J. T. Kim, S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
    [CrossRef] [PubMed]
  9. J. T. Kim, K. H. Chung, C.-G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
    [CrossRef] [PubMed]
  10. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
    [CrossRef] [PubMed]
  11. Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
    [CrossRef] [PubMed]
  12. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
    [CrossRef] [PubMed]
  13. T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
    [CrossRef]
  14. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. (to be published).
  15. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
    [CrossRef]
  16. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [CrossRef]
  17. A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
    [CrossRef]
  18. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
    [CrossRef]
  19. H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).
  20. C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
    [CrossRef]

2013 (5)

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

J. T. Kim, K. H. Chung, C.-G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
[CrossRef] [PubMed]

2012 (1)

J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
[CrossRef] [PubMed]

2011 (5)

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

J. T. Kim, S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
[CrossRef] [PubMed]

2010 (2)

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

2009 (3)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

2008 (1)

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

1996 (1)

C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[CrossRef]

Ahn, Y. H.

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

Assefa, S.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Avouris, P.

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

Bachmann, D.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Balasubramanian, K.

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[CrossRef]

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. (to be published).

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Burghard, M.

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

Cheng, Z.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Cho, S.-H.

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

Choi, C.-G.

J. T. Kim, K. H. Chung, C.-G. Choi, “Thermo-optic mode extinction modulator based on graphene plasmonic waveguide,” Opt. Express 21(13), 15280–15286 (2013).
[CrossRef] [PubMed]

J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
[CrossRef] [PubMed]

Choi, H.

J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
[CrossRef] [PubMed]

Choi, H. K.

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

Choi, J.-Y.

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

Choi, S. -Y.

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

Choi, S.-Y.

J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
[CrossRef] [PubMed]

J. T. Kim, S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
[CrossRef] [PubMed]

Choil, C. -G.

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

Chung, H.-J.

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

Chung, K. H.

Decker, C.

C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[CrossRef]

Engheta, N.

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Freitag, M.

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Fromherz, T.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Furchi, M.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Gan, X.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Gao, Y.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Golizadeh-Mojarad, R.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Guider, R.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Hone, J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Humer, M.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Jeong, H. Y.

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Kern, K.

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

Kim, B.

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

Kim, J.

J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
[CrossRef] [PubMed]

Kim, J. T.

Kim, K.

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

Kim, T.

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

Lee, D. -S.

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

Lee, E. J. H.

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Lin, Y.-M.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Meric, I.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Mueller, T.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Park, J.

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

Park, Y. W.

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

Perebeinos, V.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Pospischil, A.

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Shepard, K.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Shiue, R.-J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Tsang, H. K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Tsang, J.

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Tsen, A. W.

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Weitz, R. T.

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

Xia, F.

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

Xu, J.-B.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Xu, K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Carbon (1)

H. K. Choi, H. Y. Jeong, D. -S. Lee, C. -G. Choil, S. -Y. Choi, “Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition,” Carbon 14(3), 186–189 (2013).

Nano Lett. (2)

Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, J. Park, “Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors,” Nano Lett. 7(11), 3320–3323 (2007).
[CrossRef] [PubMed]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-M. Lin, J. Tsang, V. Perebeinos, P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett. 9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

J. T. Kim, J. Kim, H. Choi, C.-G. Choi, S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology 23(34), 344005 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, K. Kern, “Contact and edge effects in graphene devices,” Nat. Nanotechnol. 3(8), 486–490 (2008).
[CrossRef] [PubMed]

Nat. Photonics (6)

T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[CrossRef]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[CrossRef]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[CrossRef]

A. Pospischil, M. Humer, M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[CrossRef]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B 79(24), 245430 (2009).
[CrossRef]

Prog. Polym. Sci. (1)

C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[CrossRef]

Science (1)

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Other (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic view of the proposed graphene-based plasmonic potodetector for detecting a horizontally incident beam. (b) Fabricated device. Small metal pads between the two large metal pads are the source and drain contact pads. The inset shows the close-up of the fabricated graphene plasmonic PD structure, where the graphene stripe for the waveguide and graphene ribbon for the PD cross each other between the source and drain metals.

Fig. 2
Fig. 2

The measured optoelectronic characteristics of the fabricated planar-type graphene PD. (a) Current-bias voltage characteristics. The inset shows the dependence of Iph on the input light intensity. (b) Photocurrent line scan profile. The inset exhibits what D is. (c) Dependence of the photocurrent on the length L and width W of the graphene PD.

Fig. 3
Fig. 3

Temporal behavior of the fabricated graphene plasmonic PD. (a) The normalized current response to on/off light irradiation. Time response of photocurrent for (b) rising and (c) falling.

Metrics