Abstract

In this paper, we propose and investigate an optical multiplexing technique, called orthogonal time-frequency domain multiplexing (OTFDM) with multilevel signaling, that enables ultrafast, high-spectral-efficiency transmission. On the transmitter side, optical rectangular combs generated from electro-optic modulators are data modulated and multiplexed into the time-frequency domain. On the receiver side, the OTFDM signal is demultiplexed and coherently demodulated by coherent matched detection in which multi-frequency homodyne mixing with a locally generated comb down-converts a target OTFDM tributary channel into baseband frequencies. These multiplexing and demultiplexing processes are fully performed in the optical domain using optoelectronic devices, without the use of fast Fourier transform circuits or optical channel selection filters. It is analytically and numerically proved that multilevel signals such as nPSK and nQAM can be OTFDM-multiplexed and demultiplexed while retaining orthogonality between tributaries. The spectral efficiency of this method reaches as high as 1 Baud/Hz per single polarization, i.e., the Nyquist limit, enabling high-bandwidth operation unrestricted by an electronic response in the transmitter or receiver.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers

Arthur James Lowery
Opt. Express 18(13) 14129-14143 (2010)

All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses

Arthur James Lowery, Chen Zhu, Emanuele Viterbo, and Bill Corcoran
Opt. Express 22(22) 27026-27041 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in 2006 Optical Fiber Communication Conference (OFC2006) (2006), PDP39.
  2. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [Crossref]
  3. S. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [Crossref]
  4. A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.
  5. M. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987).
    [Crossref] [PubMed]
  6. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in 2002 Optical Fiber Communication Conference (OFC2002) (2002), pp. 401–402, THD1.
  7. K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Optical orthogonal frequency division multiplexing demultiplexer using slab star coupler-based optical discrete Fourier transform circuit,” Opt. Lett. 36(7), 1140–1142 (2011).
    [Crossref] [PubMed]
  8. K. Lee, C. Thai, and J. Rhee, “All optical discrete Fourier transform processor for 100 Gbps OFDM transmission,” Opt. Express 16(6), 4023–4028 (2008).
    [Crossref] [PubMed]
  9. T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.
  10. T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by Quad-Parallel Mach-Zehnder Modulator,” in 33th European Conference on Optical Communication (ECOC2007), Berlin, Germany, PDP2.8, 2007.
  11. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [Crossref] [PubMed]

2011 (1)

2008 (2)

2007 (1)

2006 (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

1987 (1)

Armstrong, J.

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in 2006 Optical Fiber Communication Conference (OFC2006) (2006), PDP39.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

Chiba, A.

T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by Quad-Parallel Mach-Zehnder Modulator,” in 33th European Conference on Optical Communication (ECOC2007), Berlin, Germany, PDP2.8, 2007.

Du, L.

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in 2006 Optical Fiber Communication Conference (OFC2006) (2006), PDP39.

Fontaine, N.

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

Geisler, D.

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

Hagimoto, K.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Hibino, Y.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Inuzuka, F.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Izutsu, M.

Jansen, S.

Kanno, A.

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by Quad-Parallel Mach-Zehnder Modulator,” in 33th European Conference on Optical Communication (ECOC2007), Berlin, Germany, PDP2.8, 2007.

Kitoh, T.

Kobayashi, T.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Lee, K.

Lowery, A.

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in 2006 Optical Fiber Communication Conference (OFC2006) (2006), PDP39.

Marhic, M.

Masuda, H.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Miyamoto, Y.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Mori, A.

Morita, I.

Oguma, M.

Rhee, J.

Sakamaki, Y.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by Quad-Parallel Mach-Zehnder Modulator,” in 33th European Conference on Optical Communication (ECOC2007), Berlin, Germany, PDP2.8, 2007.

Sanjoh, H.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in 2002 Optical Fiber Communication Conference (OFC2002) (2002), pp. 401–402, THD1.

Sano, A.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Schenk, T.

Scott, R.

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

Takahashi, H.

Takatori, Y.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Takeda, N.

Takiguchi, K.

Tanaka, H.

Thai, C.

Yamada, E.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in 2002 Optical Fiber Communication Conference (OFC2002) (2002), pp. 401–402, THD1.

Yamada, T.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Yoo, S.

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

Yoshida, E.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

Yoshikuni, Y.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in 2002 Optical Fiber Communication Conference (OFC2002) (2002), pp. 401–402, THD1.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Other (5)

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in 2006 Optical Fiber Communication Conference (OFC2006) (2006), PDP39.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30×100 Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 33th European Conference on Optical Communication (ECOC 2007) (2007), PDP1.7.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in 2002 Optical Fiber Communication Conference (OFC2002) (2002), pp. 401–402, THD1.

T. Sakamoto, A. Kanno, T. Kawanishi, N. Fontaine, D. Geisler, R. Scott, and S. Yoo, “160-Gb/s orthogonal time-frequency domain multiplexed QPSK for ultra-high-spectral-efficient transmission,” in 37th European Conference on Optical Communication (ECOC2011), Geneva, Switzerland, We.10.P1.77, 2011.

T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by Quad-Parallel Mach-Zehnder Modulator,” in 33th European Conference on Optical Communication (ECOC2007), Berlin, Germany, PDP2.8, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) OTFDM transmitter based on multiple-parallel modulation; (b) OTFDM receiver based on coherent matched detection (For simplicity, in the explanation, we assume that each tributary consists of linearly chirped optical comb.)
Fig. 2
Fig. 2 Simulation model; BPF: optical bandpass filter, ATT: optical attenuator, EDFA: Erbium-doped fiber amplifier, MZ-FCG: Mach-Zehnder modulator-based flat comb generator
Fig. 3
Fig. 3 Constellations of demultiplexed 80-Gbaud OTFDM signals: (a) OTFDM-BPSK, (b) OTFDM-QPSK, (c) OTFDM-16QAM; Eye patterns: (d) OTFDM-BPSK, (e) OTFDM-QPSK, (f) OTFDM-16QAM (measured at OSNR @ 0.1 nm = 30 dB)
Fig. 4
Fig. 4 Bit-error-rate characteristics; red squares: 80-Gbaud OTFDM-BPSK, green dots: OTFDM-QPSK, blue triangles: OTFDM-16QAM, red dotted : 80-Gbaud single-carrier (SC) BPSK (theoretical), green dashed-dotted: 80-Gbaud SC-QPSK (theoretical), blue dashed-dotted: 80-Gbaud SC-16QAM (theoretical)
Fig. 5
Fig. 5 (a) Spectral ripple in the local comb and (b) EVM calculated against bias misalignment

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) = k s k ( t ) l = l min l max a l expj { ( θ S ϕ k + ( ω 0 + l δ ω ) ( t k Δ t ) } + c . c . , L ( t ) = m = m min m max b m expj { ( θ L + ( ω 0 + m δ ω ) ( t t 0 ) } + c . c . ,
i ( t ) = η k l = l min l max m = m min m max s k ( t ) a l b m * expj { ( l m ) δ ω t ( ω 0 + l δ ω ) k Δ t θ S + θ L ϕ k } + c . c . ,
i LPF ( t ) = η k l = l min l max s k ( t ) a l b l * expj { ( ω 0 + l δ ω ) k Δ t θ S + θ L ϕ k } + c . c .
Δ t = 2 π i δ ω N , a l b l * = const . ( I ) ,
i LPF ( t ) = η N I s 0 ( t ) expj ξ 0 + η I k 0 s k ( t ) expj ξ k l = l min l max expj { 2 π i k l N } + c . c . ,
Δ A ± Δ θ = π 2 ,
A k = E 0 sin ( 2 Δ θ ) 2 π A ¯ , Φ k = ± 4 k 2 1 8 A ¯ ,
i DEMUX ( t ) = η N P 0 sin 2 ( 2 Δ θ ) 2 π A ¯ s 0 ( t ) exp j ξ 0 + c . c . ,

Metrics