Abstract

A 448 Gbit/s single-carrier dual-polarization 16-ary quadrature-amplitude-modulation (DP 16-QAM) signal and a 1.206 Tbit/s three-carrier DP 16-QAM signal are demonstrated using look-up table (LUT) correction and optical pulse shaping. The LUT correction is used to mitigate the effects of transmitter-based pattern-dependent distortion due to the high symbol rates. A programmable optical filter is employed to narrow the modulated signal spectrum and thereby enhance the spectral efficiency and reduce the requirements on the receiver bandwidth and analog-to-digital converter sampling rate. By combining these techniques, the back-to-back required optical signal-to-noise ratios are 26.6 dB and 27.2 dB for BER = 10−3, and transmission over 1200 and 1500 km of standard single-mode fiber with EDFA amplification was achieved for the 448 Gbit/s signal (12% forward error correction (FEC) overhead) and 1.206 Tbit/s signal (20% FEC overhead), respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental Study on OSNR Requirements for Spectrum-Flexible Optical Networks [Invited]

Robert Borkowski, Fotini Karinou, Marianna Angelou, Valeria Arlunno, Darko Zibar, Dimitrios Klonidis, Neil Guerrero Gonzalez, Antonio Caballero, Ioannis Tomkos, and Idelfonso Tafur Monroy
J. Opt. Commun. Netw. 4(11) B85-B93 (2012)

Real-time OFDM transmitter beyond 100 Gbit/s

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold
Opt. Express 19(13) 12740-12749 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [Crossref]
  2. K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
    [Crossref]
  3. Y.-K. Huang, E. Ip, M.-F. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Jr, Y. Aono, F. Tajima, and T. Wang, “10×456-Gb/s DP-16QAM transmission over 8×100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” Proc. Eur. Conf. Opt. Commun., PD3 (2010).
  4. J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).
  5. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” Proc. Eur. Conf. Opt. Commun., PD2.2 (2010).
  6. J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
    [Crossref]
  7. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
    [Crossref]
  8. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [Crossref]
  9. B. Spinnler, “Complexity of algorithms for digital coherent receivers,” Proc. Eur. Conf. Opt. Commun., 7.3.6 (2009).
  10. Z. Jia, J. Yu, H.-C. Chien, Z. Dong, and D. D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012).
    [Crossref]
  11. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  12. J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012).
    [Crossref]
  13. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  14. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9 × 138 Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
    [Crossref]
  15. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally Efficient Long-Haul Transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with Coherent Detection,” Proc. Conf. Opt. Fiber Commun. OW4C.2 (2012).
    [Crossref]
  16. G. Raybon, S. Randel, A. Adamiecki, P. J. Winzer, L. Salamanca, R. Urbanke, S. Chandrasekhar, A. Konczykowska, F. Jorge, J.-Y. Dupuy, L. L. Buhl, S. Draving, M. Grove, and K. Rush, “1-Tb/s dual-carrier 80-GBaud PDM-16QAM WDM transmission at 5.2 b/s/Hz over 3200 km,” Proc. IEEE Photon. Conf., PD1.2 (2012).
    [Crossref]
  17. J. H. Ke, Y. Gao, and J. C. Cartledge, “Three-carrier 1 Tbit/s dual polarization 16-QAM superchannel using look-up table correction and optical pulse shaping,” Proc. Eur. Conf. Opt. Commun., We.1.C.2 (2013).
  18. Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
    [Crossref]
  19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
    [Crossref]
  20. H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.
  21. M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).
  22. J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, and M. A. Rezania, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation for dual-polarization 16-QAM coherent optical fiber communications,” J. Lightwave Technol. 30(24), 3987–3992 (2012).
    [Crossref]
  23. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [Crossref]

2012 (7)

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012).
[Crossref]

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
[Crossref]

Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
[Crossref]

Z. Jia, J. Yu, H.-C. Chien, Z. Dong, and D. D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012).
[Crossref]

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
[Crossref]

J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, and M. A. Rezania, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation for dual-polarization 16-QAM coherent optical fiber communications,” J. Lightwave Technol. 30(24), 3987–3992 (2012).
[Crossref]

2011 (5)

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9 × 138 Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[Crossref]

2010 (1)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

2009 (1)

2008 (1)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Bertran-Pardo, O.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Bigo, S.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Borel, P. I.

Bosco, G.

Buchali, F.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Caponio, N. P.

Carena, A.

Carlson, K.

Cartledge, J. C.

Chandrasekhar, S.

Charlet, G.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Chi, N.

J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012).
[Crossref]

Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
[Crossref]

Chien, H.-C.

Z. Jia, J. Yu, H.-C. Chien, Z. Dong, and D. D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012).
[Crossref]

J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012).
[Crossref]

Cibalt, P.

M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Cigliutti, R.

Curri, V.

Dong, Z.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Fischer, J. K.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Forghieri, F.

Gao, Y.

Gnauck, A. H.

Hilt, J.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Hirooka, T.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

Huo, D. D.

Idler, W.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Isaac, R.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Jaouën, Y.

M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Jia, Z.

Karar, A. S.

Kasai, K.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

Ke, J. H.

Langhorst, C. S.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Li, X.

Liu, X.

Ludwig, R.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Magill, P.

Mardoyan, H.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Molle, L.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Nakazawa, M.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

Nelson, L. E.

Nolle, M.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Otuya, D. O.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

Peckham, D. W.

Poggiolini, P.

Renaudier, J.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Rezania, M. A.

Sasaki, T.

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

Schubert, C.

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

Schuh, K.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Selmi, M.

M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Shao, Y.

J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012).
[Crossref]

Spinnler, B.

B. Spinnler, “Complexity of algorithms for digital coherent receivers,” Proc. Eur. Conf. Opt. Commun., 7.3.6 (2009).

Torrengo, E.

Tran, P.

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

Winzer, P. J.

Yamamoto, Y.

Yoshida, M.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

Yu, J.

Zhong, K. P.

Zhou, X.

Zhu, B.

Electron. Lett. (1)

J. Renaudier, W. Idler, O. Bertran-Pardo, F. Buchali, K. Schuh, H. Mardoyan, P. Tran, G. Charlet, and S. Bigo, “Long-haul WDM transmission of 448 Gb/s polarization-division multiplexed 16-ary quadrature amplitude modulation using coherent detection,” Electron. Lett. 47(17), 973–975 (2011).
[Crossref]

IEEE Commun. Mag. (1)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (4)

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett. 24(5), 416–418 (2012).
[Crossref]

J. K. Fischer, L. Molle, M. Nőlle, C. S. Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448-Gb/s WDM transmission of 56-GBd PDM 16-QAM OTDM signals over 250-km ultralarge effective area fiber,” IEEE Photon. Technol. Lett. 23, 239–241 (2011).

J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7 × 1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012).
[Crossref]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[Crossref]

J. Lightwave Technol. (9)

Z. Jia, J. Yu, H.-C. Chien, Z. Dong, and D. D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012).
[Crossref]

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9 × 138 Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[Crossref]

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
[Crossref]

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, and M. A. Rezania, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation for dual-polarization 16-QAM coherent optical fiber communications,” J. Lightwave Technol. 30(24), 3987–3992 (2012).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
[Crossref]

Other (8)

B. Spinnler, “Complexity of algorithms for digital coherent receivers,” Proc. Eur. Conf. Opt. Commun., 7.3.6 (2009).

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” Proc. Eur. Conf. Opt. Commun., PD2.2 (2010).

Y.-K. Huang, E. Ip, M.-F. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Jr, Y. Aono, F. Tajima, and T. Wang, “10×456-Gb/s DP-16QAM transmission over 8×100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” Proc. Eur. Conf. Opt. Commun., PD3 (2010).

J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally Efficient Long-Haul Transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with Coherent Detection,” Proc. Conf. Opt. Fiber Commun. OW4C.2 (2012).
[Crossref]

G. Raybon, S. Randel, A. Adamiecki, P. J. Winzer, L. Salamanca, R. Urbanke, S. Chandrasekhar, A. Konczykowska, F. Jorge, J.-Y. Dupuy, L. L. Buhl, S. Draving, M. Grove, and K. Rush, “1-Tb/s dual-carrier 80-GBaud PDM-16QAM WDM transmission at 5.2 b/s/Hz over 3200 km,” Proc. IEEE Photon. Conf., PD1.2 (2012).
[Crossref]

J. H. Ke, Y. Gao, and J. C. Cartledge, “Three-carrier 1 Tbit/s dual polarization 16-QAM superchannel using look-up table correction and optical pulse shaping,” Proc. Eur. Conf. Opt. Commun., We.1.C.2 (2013).

H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.

M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent polmux QAM transmission systems,” Proc. Eur. Conf. Opt. Commun., P3.08 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Block diagram of LUT correction.

Fig. 2
Fig. 2

Optical spectrum of the 448 Gbit/s DP 16-QAM signal before and after the POF. The roll-off factor is 0.2.

Fig. 3
Fig. 3

Electrical spectrum of the received 448 Gbit/s DP 16-QAM signal. The roll-off factor is 0.2.

Fig. 4
Fig. 4

Optical spectrum of 1.206 Tbit/s three-carrier DP 16-QAM superchannel signal after the POFs. The roll-off factor is 0.6. RBW: resolution bandwidth.

Fig. 5
Fig. 5

Experimental set-up. EDFA: erbium doped fiber amplifier; POF: programmable optical filter; OBPF: optical bandpass filter; VOA: variable optical attenuator; PS: polarization synthesizer; AOM: acousto-optic modulator.

Fig. 6
Fig. 6

Fixed LUT corrections for 3-symbol patterns.

Fig. 7
Fig. 7

Correction distribution for the pattern [1 1 3] using the 3-symbol fixed LUT.

Fig. 8
Fig. 8

Constellation diagrams for the 448 Gbit/s DP 16-QAM signal obtained without LUT correction (left, EVM = 14.1%), with 7-symbol fixed LUT correction (center, EVM = 9.6%), and with 7-symbol updated LUT correction (right, EVM = 8.8%).

Fig. 9
Fig. 9

Dependence of the BER on OSNR for the 448 Gbit/s DP 16-QAM back-to-back system without and with fixed LUT correction.

Fig. 10
Fig. 10

Dependence of the BER on OSNR for the 448 Gbit/s DP 16-QAM back-to-back system without and with 7-symbol fixed and updated LUT corrections.

Fig. 11
Fig. 11

Fixed LUT corrections for 3-symbol pattern [1 1 3], 5-symbol pattern [a 1 1 3 b] and 7-symbol pattern [c a 1 1 3 b d], respectively. a, b, c and d can be any possibility of ± 1, ± 3.

Fig. 12
Fig. 12

Spectra for the received 448 Gbit/s DP 16-QAM optical signal for a back-to-back system and transmission over 1800 km.

Fig. 13
Fig. 13

Dependence of BER on launch power for the 448 Gbit/s DP 16-QAM signal without and with 7-symbol fixed LUT correction.

Fig. 14
Fig. 14

Dependence of BER on fiber length for the 448 Gbit/s DP 16-QAM signal without and with 7-symbol fixed LUT correction.

Fig. 15
Fig. 15

Required OSNR for BER = 10−3 versus the roll-off factor for the 1.206 Tbit/s superchannel back-to-back system with 7-symbol fixed LUT correction. The constellation diagram is for r = 0.6.

Fig. 16
Fig. 16

Dependence of BER on OSNR for the 1.206 Tbit/s superchannel signal without and with 7-symbol fixed LUT correction.

Fig. 17
Fig. 17

Dependence of BER on OSNR for the 1.206 Tbit/s superchannel signal without and with 7-symbol fixed and updated LUT corrections.

Fig. 18
Fig. 18

Dependence of BER on per-channel launch power for the 1.206 Tbit/s superchannel signal with 7-symbol fixed LUT correction, 1500 km transmission and different values of the roll-off factor.

Metrics