Abstract

We report an investigation into a double metal tungstate Raman laser when pumped at elevated average powers. Potassium gadolinium tungstate (KGW) was placed in an external cavity configured for second-Stokes output and pumped at pulse repetition rate of 38 kHz with up to 46 W of average power. For output powers above 3 W, we observe preferential excitation of Hermite-Gaussian transverse modes whose order in the X1' principal direction of the thermal expansion tensor scales linearly with Raman power. We deduce that strong astigmatic thermal lensing is induced in the Raman crystal with a negative component in the X1' direction. At maximum pump power, 8.3 W of output power was obtained at a conversion efficiency of 18%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Piper, H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [CrossRef]
  2. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [CrossRef]
  3. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [CrossRef] [PubMed]
  4. O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
    [CrossRef] [PubMed]
  5. A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
    [CrossRef]
  6. R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013).
  7. P. Dekker, J. M. Dawes, P. A. Burns, H. M. Pask, J. A. Piper, and T. Omatsu, “Power scaling of cw diode-pumped Yb:KGW self-Raman laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (IEEE, 2003), p. 50.
    [CrossRef]
  8. X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
    [CrossRef]
  9. R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
    [CrossRef]
  10. J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 30(18), 2427–2429 (2005).
    [CrossRef] [PubMed]
  11. J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb: KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
    [CrossRef]
  12. P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
    [CrossRef]
  13. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
    [CrossRef]
  14. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
    [CrossRef]
  15. S. Biswal, S. P. O'Connor, and S. R. Bowman, “Thermo-optical parameters measured in potassium-gadolinium-tungstate,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThT62.
    [CrossRef]
  16. D. Stučinskas, R. Antipenkov, A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50(2), 191–199 (2010).
    [CrossRef]
  17. Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
    [CrossRef]
  18. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [CrossRef] [PubMed]
  19. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [CrossRef]
  20. J. Findeisen, H. J. Eichler, P. Peuser, “Self-stimulating, transversally diode pumped Nd3+: KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
    [CrossRef]
  21. A. Sabella, J. A. Piper, R. P. Mildren, “Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19(23), 23554–23560 (2011).
    [CrossRef] [PubMed]
  22. V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
    [CrossRef]
  23. L. Macalik, J. Hanuza, A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33(2), 92–103 (2002).
    [CrossRef]
  24. J. Jakutis-Neto, N. U. Wetter, and H. M. Pask, “Investigation of a blue luminescence power in Raman crystals,” in Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper LS3A.1.
    [CrossRef]
  25. I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
    [CrossRef]
  26. D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
    [CrossRef]
  27. S. Saghafi, C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
    [CrossRef]
  28. C. J. Flood, G. Giuliani, H. M. van Driel, “Preferential operation of an end-pumped Nd:YAG laser in high-order Laguerre-Gauss modes,” Opt. Lett. 15(4), 215–217 (1990).
    [CrossRef] [PubMed]
  29. J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
    [CrossRef]
  30. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
    [CrossRef] [PubMed]

2013 (1)

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

2012 (5)

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
[CrossRef]

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[CrossRef] [PubMed]

O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
[CrossRef] [PubMed]

2011 (4)

J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
[CrossRef] [PubMed]

A. Sabella, J. A. Piper, R. P. Mildren, “Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19(23), 23554–23560 (2011).
[CrossRef] [PubMed]

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

2010 (2)

D. Stučinskas, R. Antipenkov, A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50(2), 191–199 (2010).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

2009 (1)

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

2007 (2)

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

J. A. Piper, H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

2006 (1)

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb: KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

2002 (1)

L. Macalik, J. Hanuza, A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33(2), 92–103 (2002).
[CrossRef]

2000 (1)

J. Findeisen, H. J. Eichler, P. Peuser, “Self-stimulating, transversally diode pumped Nd3+: KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[CrossRef]

1998 (1)

S. Saghafi, C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[CrossRef]

1997 (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

1992 (1)

J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[CrossRef]

1990 (1)

Albers, P.

J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[CrossRef]

Antipenkov, R.

D. Stučinskas, R. Antipenkov, A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50(2), 191–199 (2010).
[CrossRef]

Bai, J. T.

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Bai, Y.

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Bjurshagen, S.

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb: KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

Bohn, M. J.

Bonner, G. M.

Brasseur, J. K.

Brik, M. G.

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

Chen, X. H.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Chen, X. M.

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Chulkov, R.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Cong, Z. H.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Convery, M.

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Denisov, I. A.

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Dunina, E. B.

I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
[CrossRef]

Eichler, H. J.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

J. Findeisen, H. J. Eichler, P. Peuser, “Self-stimulating, transversally diode pumped Nd3+: KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[CrossRef]

Fan, S. Z.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Feve, J.-P. M.

Findeisen, J.

J. Findeisen, H. J. Eichler, P. Peuser, “Self-stimulating, transversally diode pumped Nd3+: KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[CrossRef]

Flood, C. J.

Frauchiger, J.

J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[CrossRef]

Giuliani, G.

Gluchowski, P.

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

Grabtchikov, A. S.

I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

Griebner, U.

Guo, J. X.

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Hanuza, J.

L. Macalik, J. Hanuza, A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33(2), 92–103 (2002).
[CrossRef]

Hellström, J. E.

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb: KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

Kaminskii, A. A.

L. Macalik, J. Hanuza, A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33(2), 92–103 (2002).
[CrossRef]

Kasprowicz, D.

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

Kemp, A. J.

Khodasevich, I. A.

I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

Kitzler, O.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
[CrossRef] [PubMed]

Kornienko, A. A.

I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
[CrossRef]

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Lee, A. J.

Li, P.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Li, S. T.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Lisinetskii, V.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Lisinetskii, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

Liu, H.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Liu, J.

Liu, Z. J.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Lux, O.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Macalik, L.

L. Macalik, J. Hanuza, A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33(2), 92–103 (2002).
[CrossRef]

Majchrowski, A.

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

McKay, A.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

O. Kitzler, A. McKay, R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
[CrossRef] [PubMed]

McKay, T.

Michalski, E.

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

Mildren, R. P.

Mochalov, I. V.

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

Omatsu, T.

Orlovich, V.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Orlovich, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

Pasiskevicius, V.

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb: KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

Pask, H. M.

G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

J. A. Piper, H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
[CrossRef] [PubMed]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

Pavlyuk, A. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Petrov, V.

Peuser, P.

J. Findeisen, H. J. Eichler, P. Peuser, “Self-stimulating, transversally diode pumped Nd3+: KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[CrossRef]

Piper, J. A.

A. Sabella, J. A. Piper, R. P. Mildren, “Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19(23), 23554–23560 (2011).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

J. A. Piper, H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
[CrossRef] [PubMed]

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

Ren, Z. Y.

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Rhee, H.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Sabella, A.

Saghafi, S.

S. Saghafi, C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[CrossRef]

Schrader, S.

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

Sheppard, C. J. R.

S. Saghafi, C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[CrossRef]

Shortoff, K. E.

Spence, D. J.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Stucinskas, D.

D. Stučinskas, R. Antipenkov, A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50(2), 191–199 (2010).
[CrossRef]

van Driel, H. M.

Varanavicius, A.

D. Stučinskas, R. Antipenkov, A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50(2), 191–199 (2010).
[CrossRef]

Wang, J.

Wang, Q. P.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Weber, H. P.

J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[CrossRef]

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

Zhang, H.

Zhang, H. J.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Zhang, H. L.

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Zhang, J.

Zhang, X. Y.

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

Appl. Phys. B (3)

R. Chulkov, V. Lisinetskii, O. Lux, H. Rhee, S. Schrader, H. J. Eichler, V. Orlovich, “Thermal aberrations and high power frequency conversion in a barium nitrate Raman laser,” Appl. Phys. B 106(4), 867–875 (2012).
[CrossRef]

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, “Laser performance and thermal lensing in high-power diode-pumped Yb: KGW with athermal orientation,” Appl. Phys. B 83(1), 55–59 (2006).
[CrossRef]

P. A. Loiko, I. A. Denisov, K. V. Yumashev, N. V. Kuleshov, A. A. Pavlyuk, “Laser performance and thermal lensing in flashlamp pumped Np-cut and Ng-cut Nd:KGW crystals,” Appl. Phys. B 100(3), 477–483 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper, H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

J. Appl. Spectrosc. (1)

I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc. 79(1), 38–45 (2012).
[CrossRef]

J. Raman Spectrosc. (1)

L. Macalik, J. Hanuza, A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33(2), 92–103 (2002).
[CrossRef]

Laser Phys. (1)

Y. Bai, X. M. Chen, J. X. Guo, H. L. Zhang, J. T. Bai, Z. Y. Ren, “Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG,” Laser Phys. 22(3), 535–539 (2012).
[CrossRef]

Laser Phys. Lett. (2)

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, H. J. Zhang, “Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,” Laser Phys. Lett. 6(5), 363–366 (2009).
[CrossRef]

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Lith. J. Phys. (1)

D. Stučinskas, R. Antipenkov, A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50(2), 191–199 (2010).
[CrossRef]

Opt. Commun. (3)

V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, V. A. Orlovich, “Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region,” Opt. Commun. 272(2), 509–513 (2007).
[CrossRef]

S. Saghafi, C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
[CrossRef]

J. Findeisen, H. J. Eichler, P. Peuser, “Self-stimulating, transversally diode pumped Nd3+: KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[CrossRef]

Opt. Eng. (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (2)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[CrossRef]

D. Kasprowicz, M. G. Brik, A. Majchrowski, E. Michalski, P. Głuchowski, “Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions,” Opt. Mater. 33(11), 1595–1601 (2011).
[CrossRef]

Prog. Quantum Electron. (2)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Other (4)

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013).

P. Dekker, J. M. Dawes, P. A. Burns, H. M. Pask, J. A. Piper, and T. Omatsu, “Power scaling of cw diode-pumped Yb:KGW self-Raman laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (IEEE, 2003), p. 50.
[CrossRef]

S. Biswal, S. P. O'Connor, and S. R. Bowman, “Thermo-optical parameters measured in potassium-gadolinium-tungstate,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThT62.
[CrossRef]

J. Jakutis-Neto, N. U. Wetter, and H. M. Pask, “Investigation of a blue luminescence power in Raman crystals,” in Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper LS3A.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experiment schematic showing pump and amplifier arrangement. Inset graphs depict a typical far field image of the amplified pump beam.

Fig. 2
Fig. 2

Output power of the KGW Raman laser as a function of incident pump power. Dashed lines are linear regressions to the experimental data at low output power and at higher output powers delineated by the point at which the transverse mode profile transitioned to higher order operation (refer also Fig. 4). Inset shows the typical pulse shapes for the incident pump (green), reflected residual pump (blue) and Raman output mode (red) at locations indicated in Fig. 1 with corrections for the optical path difference at the different locations.

Fig. 3
Fig. 3

Spectral features of the external cavity KGW Raman laser with 5.5 W total Raman output. A, C and D show the locations of the first, second and third Stokes wavelengths, and B feature we attribute to a Stokes line shifted from the first Stokes by ~200 cm−1. The inset shows visible upconversion spectrum for off-axis propagating light collected adjacent the Raman crystal.

Fig. 4
Fig. 4

Experimentally determined beam propagation factor, M2 of the KGW Raman laser as a function of average Raman output power. Error bars, where indicated, show the range of the measured values. Inset show typical quasi-near-field profiles of the Raman output beam at selected power levels.

Fig. 5
Fig. 5

(a) Near field profile of 1200 nm output at maximum pump power with principal axes of the crystal a and c (dotted), thermal expansion tensor X1' and X3' (dashed), and thermo-optical tensor Nm and Ng (solid lines) overlaid. Ellipsoids indicate proportional strengths of thermal expansion αT and thermo-optic dn/dT coefficients. (b) Intensity line profiles of the beam along the X1 and X3 directions. The red line is a Gaussian function (TEM00) fit to the beam profile along the X3 direction and overlaid on the orthogonal profile. The blue line shows the profile for a seventh-order standard Hermite-Gaussian mode (TEM07).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ψ(x)= 2/π 2 m m! w 0 H m ( 2 x w 0 ) 2 exp ( x 2 w 0 2 ) 2 ,

Metrics