Abstract

A novel method for removing thin clouds from single satellite image is presented based on a cloud physical model. Given the unevenness of clouds, the cloud background is first estimated in the frequency domain and an adjustment function is used to suppress the areas with greater gray values and enhance the dark objects. An image, mainly influenced by transmission, is obtained by subtracting the cloud background from the original cloudy image. The final image with proper color and contrast is obtained by decreasing the effect of transmission using the proposed max–min radiation correction approach and an adaptive brightness factor. The results indicate that the proposed method can more effectively remove thin clouds, improve contrast, restore color information, and retain detailed information compared with the commonly used image enhancement and haze removal methods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
    [CrossRef]
  2. Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
    [CrossRef]
  3. C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).
  4. A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
    [CrossRef]
  5. S. Benabdelkader, F. Melgani, “Contextual spatio spectral post reconstruction of cloud-contaminated images,” IEEE Geosci. Remote Sens. Lett. 5(2), 204–208 (2008).
    [CrossRef]
  6. F. Melgani, “Contextual reconstruction of cloud-contaminated multi temporal multispectral images,” IEEE Trans. Geosci. Rem. Sens. 44(2), 442–455 (2006).
    [CrossRef]
  7. M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
    [CrossRef] [PubMed]
  8. Z. Rahman, D. D. Jobson, G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13(1), 100–110 (2004).
    [CrossRef]
  9. D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround Retinex,” IEEE Trans. Image Process. 6(3), 451–462 (1997).
    [CrossRef] [PubMed]
  10. D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
    [CrossRef] [PubMed]
  11. J. Liu, Z. F. Shao, Q. M. Cheng, “Color constancy enhancement under poor illumination,” Opt. Lett. 36(24), 4821–4823 (2011).
    [CrossRef] [PubMed]
  12. Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, “Instant Dehazing of Images Using Polarization,” IEEE Conf. Computer Vision and Pattern Recognition, 1: 325–332 (2001)
  13. S. Shwartz, E. Namer, Y. Y. Schechner, “Blind Haze Separation,” IEEE Conf. Computer Vision and Pattern Recognition,2: 1984–1991 (2006).
  14. J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
    [CrossRef]
  15. S. G. Narasimhan, S. K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
    [CrossRef]
  16. R. Tan, “Visibility in bad weather from a single image”. IEEE Conference on Computer Vision and Pattern Recognition, 1–8 (2008).
    [CrossRef]
  17. R. Fattal. “Single image dehazing”. ACM SIGGRAPH,1–9(2008).
  18. K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior”. IEEE Conference on Computer Vision and Pattern Recognition, 1956–1963 (2009).
  19. K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010).
    [PubMed]
  20. J. P. Tarel, N. Hautière, “Fast Visibility Restoration from a Single Color or Gray Level Image”,IEEE International Conference on Computer Vision (ICCV'09),2201–2208 (2009)
    [CrossRef]
  21. Z. K. Liu, B. R. Hunt, “A new approach to removing cloud cover from satellite imagery,” Comput. Vis. Graph. Image Process. 25(2), 252–256 (1984).
    [CrossRef]
  22. F. Chen, D.M. Yan, Z.M. Zhao. “Haze detection and removal in remote sensing images based on undecimated wavelet transform”. Geomatics and information science of Wuhan University, 71–74 (2007)

2011

2010

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010).
[PubMed]

2009

A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
[CrossRef]

2008

S. Benabdelkader, F. Melgani, “Contextual spatio spectral post reconstruction of cloud-contaminated images,” IEEE Geosci. Remote Sens. Lett. 5(2), 204–208 (2008).
[CrossRef]

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

2006

F. Melgani, “Contextual reconstruction of cloud-contaminated multi temporal multispectral images,” IEEE Trans. Geosci. Rem. Sens. 44(2), 442–455 (2006).
[CrossRef]

2004

Z. Rahman, D. D. Jobson, G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13(1), 100–110 (2004).
[CrossRef]

C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).

2003

S. G. Narasimhan, S. K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[CrossRef]

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
[CrossRef] [PubMed]

2002

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

1997

D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround Retinex,” IEEE Trans. Image Process. 6(3), 451–462 (1997).
[CrossRef] [PubMed]

D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[CrossRef] [PubMed]

1984

Z. K. Liu, B. R. Hunt, “A new approach to removing cloud cover from satellite imagery,” Comput. Vis. Graph. Image Process. 25(2), 252–256 (1984).
[CrossRef]

Augereau, B.

A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
[CrossRef]

Benabdelkader, S.

S. Benabdelkader, F. Melgani, “Contextual spatio spectral post reconstruction of cloud-contaminated images,” IEEE Geosci. Remote Sens. Lett. 5(2), 204–208 (2008).
[CrossRef]

Bertalmio, M.

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
[CrossRef] [PubMed]

Carré, P.

A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
[CrossRef]

Chen, B.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Chen, X.

C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).

Cheng, Q. M.

Cihlar, J.

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Cohen, M.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Cohen-Or, D.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Dai, Q.

C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).

Deussen, O.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Feng, C.

C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).

Fernandez-Maloigne, C.

A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
[CrossRef]

Guindon, B.

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Hautière, N.

J. P. Tarel, N. Hautière, “Fast Visibility Restoration from a Single Color or Gray Level Image”,IEEE International Conference on Computer Vision (ICCV'09),2201–2208 (2009)
[CrossRef]

He, K. M.

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010).
[PubMed]

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior”. IEEE Conference on Computer Vision and Pattern Recognition, 1956–1963 (2009).

Hunt, B. R.

Z. K. Liu, B. R. Hunt, “A new approach to removing cloud cover from satellite imagery,” Comput. Vis. Graph. Image Process. 25(2), 252–256 (1984).
[CrossRef]

Jobson, D. D.

Z. Rahman, D. D. Jobson, G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13(1), 100–110 (2004).
[CrossRef]

Jobson, D. J.

D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround Retinex,” IEEE Trans. Image Process. 6(3), 451–462 (1997).
[CrossRef] [PubMed]

D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[CrossRef] [PubMed]

Kopf, J.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Lischinski, D.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Liu, J.

Liu, Z. K.

Z. K. Liu, B. R. Hunt, “A new approach to removing cloud cover from satellite imagery,” Comput. Vis. Graph. Image Process. 25(2), 252–256 (1984).
[CrossRef]

Ma, J. W.

C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).

Maalouf, A.

A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
[CrossRef]

Melgani, F.

S. Benabdelkader, F. Melgani, “Contextual spatio spectral post reconstruction of cloud-contaminated images,” IEEE Geosci. Remote Sens. Lett. 5(2), 204–208 (2008).
[CrossRef]

F. Melgani, “Contextual reconstruction of cloud-contaminated multi temporal multispectral images,” IEEE Trans. Geosci. Rem. Sens. 44(2), 442–455 (2006).
[CrossRef]

Namer, E.

S. Shwartz, E. Namer, Y. Y. Schechner, “Blind Haze Separation,” IEEE Conf. Computer Vision and Pattern Recognition,2: 1984–1991 (2006).

Narasimhan, S. G.

S. G. Narasimhan, S. K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[CrossRef]

Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, “Instant Dehazing of Images Using Polarization,” IEEE Conf. Computer Vision and Pattern Recognition, 1: 325–332 (2001)

Nayar, S. K.

S. G. Narasimhan, S. K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[CrossRef]

Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, “Instant Dehazing of Images Using Polarization,” IEEE Conf. Computer Vision and Pattern Recognition, 1: 325–332 (2001)

Neubert, B.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Osher, S.

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
[CrossRef] [PubMed]

Rahman, Z.

Z. Rahman, D. D. Jobson, G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13(1), 100–110 (2004).
[CrossRef]

D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[CrossRef] [PubMed]

D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround Retinex,” IEEE Trans. Image Process. 6(3), 451–462 (1997).
[CrossRef] [PubMed]

Sapiro, G.

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
[CrossRef] [PubMed]

Schechner, Y. Y.

S. Shwartz, E. Namer, Y. Y. Schechner, “Blind Haze Separation,” IEEE Conf. Computer Vision and Pattern Recognition,2: 1984–1991 (2006).

Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, “Instant Dehazing of Images Using Polarization,” IEEE Conf. Computer Vision and Pattern Recognition, 1: 325–332 (2001)

Shao, Z. F.

Shwartz, S.

S. Shwartz, E. Namer, Y. Y. Schechner, “Blind Haze Separation,” IEEE Conf. Computer Vision and Pattern Recognition,2: 1984–1991 (2006).

Sun, J.

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010).
[PubMed]

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior”. IEEE Conference on Computer Vision and Pattern Recognition, 1956–1963 (2009).

Tan, R.

R. Tan, “Visibility in bad weather from a single image”. IEEE Conference on Computer Vision and Pattern Recognition, 1–8 (2008).
[CrossRef]

Tang, X. O.

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010).
[PubMed]

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior”. IEEE Conference on Computer Vision and Pattern Recognition, 1956–1963 (2009).

Tarel, J. P.

J. P. Tarel, N. Hautière, “Fast Visibility Restoration from a Single Color or Gray Level Image”,IEEE International Conference on Computer Vision (ICCV'09),2201–2208 (2009)
[CrossRef]

Uyttendaele, M.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Vese, L.

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
[CrossRef] [PubMed]

Woodell, G. A.

Z. Rahman, D. D. Jobson, G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13(1), 100–110 (2004).
[CrossRef]

D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround Retinex,” IEEE Trans. Image Process. 6(3), 451–462 (1997).
[CrossRef] [PubMed]

D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

ACM Trans. Graph.

J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graph. 27(5), 1–10 (2008).
[CrossRef]

Comput. Vis. Graph. Image Process.

Z. K. Liu, B. R. Hunt, “A new approach to removing cloud cover from satellite imagery,” Comput. Vis. Graph. Image Process. 25(2), 252–256 (1984).
[CrossRef]

IEEE Geosci. Remote Sens. Lett.

S. Benabdelkader, F. Melgani, “Contextual spatio spectral post reconstruction of cloud-contaminated images,” IEEE Geosci. Remote Sens. Lett. 5(2), 204–208 (2008).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens.

F. Melgani, “Contextual reconstruction of cloud-contaminated multi temporal multispectral images,” IEEE Trans. Geosci. Rem. Sens. 44(2), 442–455 (2006).
[CrossRef]

A. Maalouf, P. Carré, B. Augereau, C. Fernandez-Maloigne, “A Bandelet-Based Inpainting Technique for Clouds Removal From Remotely Sensed Images,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2363–2371 (2009).
[CrossRef]

IEEE Trans. Image Process.

M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process. 12(8), 882–889 (2003).
[CrossRef] [PubMed]

D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround Retinex,” IEEE Trans. Image Process. 6(3), 451–462 (1997).
[CrossRef] [PubMed]

D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6(7), 965–976 (1997).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

S. G. Narasimhan, S. K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[CrossRef]

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010).
[PubMed]

IGARSS

C. Feng, J. W. Ma, Q. Dai, X. Chen, “An improved method for cloud removal in ASTER data change detection,” IGARSS 04(5), 3387–3389 (2004).

J. Electron. Imaging

Z. Rahman, D. D. Jobson, G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13(1), 100–110 (2004).
[CrossRef]

Opt. Lett.

Remote Sens. Environ.

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Y. Zhang, B. Guindon, J. Cihlar, “An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images,” Remote Sens. Environ. 82(2-3), 173–187 (2002).
[CrossRef]

Other

R. Tan, “Visibility in bad weather from a single image”. IEEE Conference on Computer Vision and Pattern Recognition, 1–8 (2008).
[CrossRef]

R. Fattal. “Single image dehazing”. ACM SIGGRAPH,1–9(2008).

K. M. He, J. Sun, X. O. Tang, “Single Image Haze Removal Using Dark Channel Prior”. IEEE Conference on Computer Vision and Pattern Recognition, 1956–1963 (2009).

Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, “Instant Dehazing of Images Using Polarization,” IEEE Conf. Computer Vision and Pattern Recognition, 1: 325–332 (2001)

S. Shwartz, E. Namer, Y. Y. Schechner, “Blind Haze Separation,” IEEE Conf. Computer Vision and Pattern Recognition,2: 1984–1991 (2006).

J. P. Tarel, N. Hautière, “Fast Visibility Restoration from a Single Color or Gray Level Image”,IEEE International Conference on Computer Vision (ICCV'09),2201–2208 (2009)
[CrossRef]

F. Chen, D.M. Yan, Z.M. Zhao. “Haze detection and removal in remote sensing images based on undecimated wavelet transform”. Geomatics and information science of Wuhan University, 71–74 (2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The physical model of thin cloud.

Fig. 2
Fig. 2

Cloud background estimation (a) Original single band image (b) Image mainly influenced by transmission (c)Estimated cloud background where d1 = 10 and d2 = 10 (d)Estimated cloud background where d1 = 20 and d2 = 20 (e)Estimated cloud background where d1 = 30 and d2 = −30 (f) The adjusting function.

Fig. 3
Fig. 3

Transmission reduction.(a) image mainly influenced by transmission, (b) cloud-free image with β = 1.0, (c) histogram prior to processing, (d) histogram after processing with different values of β,(e) original cloudy color image, (f) color image without clouds with β = 0.6, (g) color image without clouds with β = 1.0, and (h) color image without clouds with adaptive β.

Fig. 4
Fig. 4

Cloud removal results with different d1, d2 and adaptive β (a) Original single image (b) result with d1 = 10 and d2 = 10 (c)result with d1 = 20 and d2 = 20 (d)result with d1 = 30 and d2 = −30.

Fig. 5
Fig. 5

Thin cloud removal results: (a) Original cloudy image, (b) Ground truth image, (c) Tarel’s result, (d) He’s result, (e) MSRCR, (f) HF, (g) Wavelet-based result and (h) Our result.

Fig. 6
Fig. 6

Subset images of thin cloud removal results in Fig. 5: (a) Original cloudy image, (b) Ground truth image, (c) Tarel’s result, (d) He’s result, (e) MSRCR, (f) HF, (g) Wavelet-based result and (h) Our result.

Fig. 7
Fig. 7

Mean and standard deviation of five parts of images in every bands. (a) Mean of R band (b) Standard deviation of R band (c) Mean of G band (d) Standard deviation of G band (e) Mean of B band (f) Standard deviation of B band (g) Average mean of all bands (h) Average standard deviation of all bands.

Fig. 8
Fig. 8

Thick cloud removal results: (a) Original cloudy image, (b) Ground truth image, (c) Tarel’s result, (d) He’s result, (e) MSRCR, (f) HF, (g) Wavelet-based result and (h) Our result.

Fig. 9
Fig. 9

Subset images of thin cloud removal results in Fig. 8: (a) Original cloudy image, (b) Ground truth image, (c) Tarel’s result, (d) He’s result, (e) MSRCR, (f) HF, (g) Wavelet-based result and (h) Our result

Fig. 10
Fig. 10

Removal of clouds from several satellite images using the proposed method. (a), (c), and (e) are original cloudy images, whereas (b), (d), and (f) are the corresponding cloud-free images

Tables (1)

Tables Icon

Table 1 Objective evaluation of results in Fig. 8.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=aLr(x,y)t(x,y)+L(1t(x,y))
H(u,v)=exp[ D 2 (u,v) 2 σ 0 2 ]
B cloud =IFFT[FFT(I)×H]
B cloud (x,y)={ B cloud (x,y)+ [ B cloud (x,y)th max( B cloud )th ] λ * d 1 , B cloud (x,y)>th B cloud (x,y) [ th B cloud (x,y) thmin( B cloud ) ] λ * d 2 , B cloud (x,y)th
I'(x,y)=I(x,y) B cloud (x,y)+offset
{ i=1 h_min h(i) Tand i=1 h_min+1 h(i) >T j=256 h_max h(j)T and j=256 h_max1 h(j) >T
I restored (x,y)={ 0,I'(x,y)<h_min 255*[ I'(x,y)h_min h_maxh_min ] β ,h_min<I'(x,y)<h_max 255,I'(x,y)>h_max
β = { m e a n [ A ( x , y ) ] / 128 , m e a n [ A ( x , y ) ] 128 128 / m e a n [ A ( x , y ) ] , o t h e r w i s e
D E = 1 ( M 1 ) ( N 1 ) x = 1 M 1 y = 1 N 1 Δ x 2 + Δ y 2 2
Δ x =I(x+1,y)I(x,y)
Δ y =I(x,y+1)I(x,y)

Metrics