Abstract

Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
    [CrossRef]
  2. N. Riesen, J. D. Love, J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
    [CrossRef]
  3. R. Ryf, M. A. Mestre, A. H. Gnauck, S. Randel, C. Schmidt, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle, “Low-loss mode coupler for mode-multiplexed transmission in few-mode fiber,” in Proceedings of Optical Fiber Communication Conference (2012), paper PDP5B.5.
  4. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [CrossRef] [PubMed]
  5. N. K. Fontaine, S. G. Leon-Saval, R. Ryf, J. R. Salazar Gil, B. Ercan, and J. Bland-Hawthorn, “Mode selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber,” in Proceedings of European Conference on Optical Communication (2013), paper PD1.C.3.
  6. S. Yerolatsitis and T. A. Birks, “Three-mode multiplexer in photonic crystal fibre,” in Proceedings of European Conference on Optical Communication (2013), paper Mo.4.A.4.
  7. S. Yerolatsitis and T. A. Birks, “Tapered mode multiplexer based on standard single-mode fibre,” in Proceedings of European Conference on Optical Communication (2013), paper PD1.C.1.
  8. E. Kapon, R. N. Thurston, “Multichannel waveguide junctions for guided-wave optics,” Appl. Phys. Lett. 50(24), 1710–1712 (1987).
    [CrossRef]
  9. T. A. Birks, D. O. Culverhouse, S. G. Farwell, P. St. J. Russell, “2 x 2 Single-mode fiber routing switch,” Opt. Lett. 21(10), 722–724 (1996).
    [CrossRef] [PubMed]
  10. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32(4), 328–330 (2007).
    [CrossRef] [PubMed]
  11. A. Witkowska, S. G. Leon-Saval, A. Pham, T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008).
    [CrossRef] [PubMed]
  12. BeamPROP, http://optics.synopsys.com/ .
  13. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31(18), 2672–2674 (2006).
    [CrossRef] [PubMed]
  14. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
    [CrossRef] [PubMed]
  15. D. B. Mortimore, “Wavelength-flattened fused couplers,” Electron. Lett. 21(17), 742–743 (1985).
    [CrossRef]
  16. T. A. Birks, B. J. Mangan, A. Díez, J. L. Cruz, D. F. Murphy, ““Photonic lantern” spectral filters in multi-core fibre,” Opt. Express 20(13), 13996–14008 (2012).
    [CrossRef] [PubMed]
  17. D. B. Mortimore, J. W. Arkwright, “Performance tuning of 1 × 7 wavelength-flattened fused fibre couplers,” Electron. Lett. 26(18), 1442–1443 (1990).
    [CrossRef]
  18. D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
    [CrossRef] [PubMed]
  19. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc. Pt. J 138, 343–354 (1991).
    [CrossRef]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), 651–653.
  21. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
    [CrossRef]
  22. T. A. Birks, G. J. Pearce, D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006).
    [CrossRef] [PubMed]

2012

2009

2008

2007

2006

2002

K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
[CrossRef]

1996

1990

D. B. Mortimore, J. W. Arkwright, “Performance tuning of 1 × 7 wavelength-flattened fused fibre couplers,” Electron. Lett. 26(18), 1442–1443 (1990).
[CrossRef]

1989

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

1987

E. Kapon, R. N. Thurston, “Multichannel waveguide junctions for guided-wave optics,” Appl. Phys. Lett. 50(24), 1710–1712 (1987).
[CrossRef]

1985

D. B. Mortimore, “Wavelength-flattened fused couplers,” Electron. Lett. 21(17), 742–743 (1985).
[CrossRef]

Arkwright, J. W.

N. Riesen, J. D. Love, J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[CrossRef]

D. B. Mortimore, J. W. Arkwright, “Performance tuning of 1 × 7 wavelength-flattened fused fibre couplers,” Electron. Lett. 26(18), 1442–1443 (1990).
[CrossRef]

Artiglia, M.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Barton, J. S.

Bird, D. M.

Birks, T. A.

Bland-Hawthorn, J.

Bookey, H. T.

Campbell, S.

Coppa, G.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Cruz, J. L.

Culverhouse, D. O.

Di Vita, P.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Díez, A.

Farwell, S. G.

Fender, A.

Fontaine, N. K.

Hwang, I. K.

K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
[CrossRef]

Kapon, E.

E. Kapon, R. N. Thurston, “Multichannel waveguide junctions for guided-wave optics,” Appl. Phys. Lett. 50(24), 1710–1712 (1987).
[CrossRef]

Kar, A. K.

Kim, B. Y.

K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
[CrossRef]

Lai, K.

Leon-Saval, S. G.

Love, J. D.

N. Riesen, J. D. Love, J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[CrossRef]

Macpherson, W. N.

Mangan, B. J.

Mortimore, D. B.

D. B. Mortimore, J. W. Arkwright, “Performance tuning of 1 × 7 wavelength-flattened fused fibre couplers,” Electron. Lett. 26(18), 1442–1443 (1990).
[CrossRef]

D. B. Mortimore, “Wavelength-flattened fused couplers,” Electron. Lett. 21(17), 742–743 (1985).
[CrossRef]

Murphy, D. F.

Nielsen, M. D.

Noordegraaf, D.

Pearce, G. J.

Pham, A.

Potenza, M.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Psaila, N. D.

Reid, D. T.

Riesen, N.

N. Riesen, J. D. Love, J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[CrossRef]

Russell, P. St. J.

Ryf, R.

Sharma, A.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Skovgaard, P. M. W.

Song, K. Y.

K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
[CrossRef]

Thomson, R. R.

Thurston, R. N.

E. Kapon, R. N. Thurston, “Multichannel waveguide junctions for guided-wave optics,” Appl. Phys. Lett. 50(24), 1710–1712 (1987).
[CrossRef]

Wadsworth, W. J.

Witkowska, A.

Yun, S. H.

K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
[CrossRef]

Appl. Phys. Lett.

E. Kapon, R. N. Thurston, “Multichannel waveguide junctions for guided-wave optics,” Appl. Phys. Lett. 50(24), 1710–1712 (1987).
[CrossRef]

Electron. Lett.

D. B. Mortimore, J. W. Arkwright, “Performance tuning of 1 × 7 wavelength-flattened fused fibre couplers,” Electron. Lett. 26(18), 1442–1443 (1990).
[CrossRef]

D. B. Mortimore, “Wavelength-flattened fused couplers,” Electron. Lett. 21(17), 742–743 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett. 14(4), 501–503 (2002).
[CrossRef]

N. Riesen, J. D. Love, J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[CrossRef]

J. Lightwave Technol.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Ryf, M. A. Mestre, A. H. Gnauck, S. Randel, C. Schmidt, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle, “Low-loss mode coupler for mode-multiplexed transmission in few-mode fiber,” in Proceedings of Optical Fiber Communication Conference (2012), paper PDP5B.5.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc. Pt. J 138, 343–354 (1991).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), 651–653.

BeamPROP, http://optics.synopsys.com/ .

N. K. Fontaine, S. G. Leon-Saval, R. Ryf, J. R. Salazar Gil, B. Ercan, and J. Bland-Hawthorn, “Mode selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber,” in Proceedings of European Conference on Optical Communication (2013), paper PD1.C.3.

S. Yerolatsitis and T. A. Birks, “Three-mode multiplexer in photonic crystal fibre,” in Proceedings of European Conference on Optical Communication (2013), paper Mo.4.A.4.

S. Yerolatsitis and T. A. Birks, “Tapered mode multiplexer based on standard single-mode fibre,” in Proceedings of European Conference on Optical Communication (2013), paper PD1.C.1.

Supplementary Material (2)

» Media 1: MOV (1724 KB)     
» Media 2: MOV (1366 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic adiabatic mode multiplexer, in which three dissimilar input cores merge gradually into one asymmetric few-moded output core. Because the structure is adiabatic, light propagates from the input core of n-th greatest β to the output mode of n-th greatest β (or vice versa).

Fig. 2
Fig. 2

(top) Schematic cross-sections at different points along an idealized PCF mode multiplexer, with air holes shown black. Three identical cores (a) become dissimilar (b) then gradually merge (c) to form one large not-quite-hexagonal core (d). We will refer to the cores in (b) by the numbers 1, 2 and 3 in decreasing order of size. (middle and bottom) Cross-sectional optical micrographs around the cores of (a) two original PCFs, and (b-d) experimental devices formed by controllably collapsing holes in each fiber at locations corresponding to the top row. The micrographs are all to the same scale; the hole pitch in the original fibers was Λ = 5 µm and the transitions from (b) to (d) were 4 cm long.

Fig. 3
Fig. 3

(rows, left to right) (Media 1) Simulated propagation of light through the model PCF device, for light in the input core indicated. Orange and blue represent opposite phases of field amplitude, and the grey circles are the hole boundaries. Locations (a-d) correspond to Fig. 1.

Fig. 4
Fig. 4

Measured near-field (a) and far-field (b) intensity patterns at the output of the fiber B device for 1550 nm light in the core indicated. (c) Near-field intensity profiles (arbitrary linear units) along the lines indicated in (a).

Fig. 5
Fig. 5

(a) Output core of a device with full hexagonal symmetry. (b) Measured near-field output intensity patterns for 1550 nm light in the core indicated.

Fig. 6
Fig. 6

(top) Schematic mode multiplexer made by fusing and tapering three SMFs in an F-doped capillary. Two of the SMFs are pre-tapered to make them all dissimilar, but the un-pretapered ends (far left; not shown) are identical. (bottom) Micrographs (same scale) of cleaved cross-sections along the taper. (There is no image of the unfused structure.) The final waist was 18 µm across.

Fig. 7
Fig. 7

Light patterns at the MMF-like output, for 1310 nm light in the input fibers indicated. The top and middle rows are experimentally-measured near- and far-field images respectively. The bottom row are simulated near-field mode patterns, together with the modes' effective refractive indices. There is no scale relationship between the different rows. The measured near- and far-field patterns are co-orientated as in the experiment, but no attempt was made to match their orientation with the simulations.

Fig. 8
Fig. 8

Measured near-field patterns at the MMF-like output, for light of the indicated wavelengths in the input fiber indicated.

Fig. 9
Fig. 9

(a) The maximum normalized rate of MFD expansion versus the ratio of cladding to core areas for a clad step-index fiber. (insets) (Media 2) Field distributions ψ(r/ρ) for V = 2, 1 and 0.4 (inner to outer curves) for the three area ratios marked. (b) The length L of an ideal adiabatic taper versus the ratio α of cladding and core diameters. (inset) The ideal taper profile V(z), a proxy for local core radius ρ(z), for fibers with the labeled α values. The α's are marked on the main curve and correspond to the three insets in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| 2π ( β 1 β 2 ) dρ dz Ψ 1 Ψ 2 ρ dA |<<1,
| πk n 0 ( β 1 β 2 ) 2 dρ dz n 2 ρ Ψ 1 Ψ 2 dA |<<1,

Metrics