Abstract

We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
    [CrossRef] [PubMed]
  3. Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).
  4. E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
    [CrossRef]
  5. G. L. Long, L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
    [CrossRef]
  6. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
    [CrossRef] [PubMed]
  7. G. R. Feng, G. F. Xu, G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
    [CrossRef] [PubMed]
  8. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
    [CrossRef]
  9. K. Nemoto, W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [CrossRef]
  10. Q. Lin, J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
    [CrossRef]
  11. C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
    [CrossRef] [PubMed]
  12. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [CrossRef]
  13. C. Y. Hu, W. J. Munro, J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [CrossRef]
  14. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [CrossRef] [PubMed]
  15. H. R. Wei, F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
    [CrossRef]
  16. H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [CrossRef] [PubMed]
  17. H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
    [CrossRef]
  18. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [CrossRef] [PubMed]
  19. B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
    [CrossRef]
  20. T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
    [CrossRef]
  21. J. Clarke, F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
    [CrossRef]
  22. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
    [CrossRef]
  23. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
    [CrossRef] [PubMed]
  24. B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
    [CrossRef]
  25. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
    [CrossRef] [PubMed]
  26. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
    [CrossRef] [PubMed]
  27. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
    [CrossRef]
  28. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
    [CrossRef] [PubMed]
  29. D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
    [CrossRef]
  30. J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
    [CrossRef] [PubMed]
  31. C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [CrossRef]
  32. D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  33. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
    [CrossRef]
  34. L. M. Duan, H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [CrossRef] [PubMed]
  35. C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
    [CrossRef]
  36. J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
    [CrossRef]
  37. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
    [CrossRef]
  38. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [CrossRef]
  39. J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
    [CrossRef] [PubMed]
  40. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [CrossRef]
  41. C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [CrossRef]
  42. A. B. Young, C. Y. Hu, J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
    [CrossRef]
  43. B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
    [CrossRef] [PubMed]
  44. T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
    [CrossRef]
  45. J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
    [CrossRef]
  46. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [CrossRef]
  47. V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
    [CrossRef]
  48. E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [CrossRef] [PubMed]
  49. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
    [CrossRef]
  50. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
    [CrossRef]
  51. J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
    [CrossRef] [PubMed]
  52. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef] [PubMed]
  53. D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
    [CrossRef] [PubMed]
  54. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
    [CrossRef] [PubMed]
  55. V. V. Shende, I. L. Markov, S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
    [CrossRef]
  56. H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
    [CrossRef]
  57. V. V. Shende, I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).
  58. J. A. Smolin, D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
    [CrossRef] [PubMed]
  59. J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [CrossRef]

2013 (9)

G. R. Feng, G. F. Xu, G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[CrossRef] [PubMed]

H. R. Wei, F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[CrossRef]

H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef] [PubMed]

H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[CrossRef]

A. B. Young, C. Y. Hu, J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[CrossRef]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

2012 (5)

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[CrossRef] [PubMed]

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

2011 (4)

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

2010 (4)

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

2009 (6)

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

Q. Lin, J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

V. V. Shende, I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

2008 (6)

H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

J. Clarke, F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

2007 (2)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

2006 (1)

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

2005 (2)

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

2004 (8)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

V. V. Shende, I. L. Markov, S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

L. M. Duan, H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[CrossRef] [PubMed]

K. Nemoto, W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

G. L. Long, L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[CrossRef]

2003 (3)

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

2001 (4)

J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

1996 (1)

J. A. Smolin, D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

1982 (1)

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

An, J. H.

J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Astafiev, O.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

Awschalom, D. D.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[CrossRef] [PubMed]

Bakker, M.

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Bawendi, M. G.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Bayer, M.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Beenakker, C. W. J.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[CrossRef] [PubMed]

Beirne, G. J.

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Berezovsky, J.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Beyler, A. P.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Birkedal, D.

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Bonato, C.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[CrossRef] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Bouwmeester, D.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[CrossRef] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

Brokmann, X.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Brunner, D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Bullock, S. S.

V. V. Shende, I. L. Markov, S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[CrossRef]

Chen, O.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Clarke, J.

J. Clarke, F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Coldren, L. A.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Cui, J.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Dalgarno, P. A.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

De Greve, K.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

Deng, F. G.

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[CrossRef]

H. R. Wei, F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[CrossRef]

H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef] [PubMed]

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

Deng, Z. B.

H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Ding, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

DiVincenzo, D. P.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[CrossRef] [PubMed]

J. A. Smolin, D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[CrossRef] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Domhan, M.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Du, J. F.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Duan, L. M.

L. M. Duan, H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

Efros, A. L.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Emary, C.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[CrossRef] [PubMed]

Feng, G. R.

G. R. Feng, G. F. Xu, G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[CrossRef] [PubMed]

Feng, M.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[CrossRef]

Forchel, A.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Fredkin, E.

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

Gaebel, T.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Gammon, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Gerardot, B. D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Greilich, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Gudat, J.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

Gupta, J. A.

J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[CrossRef] [PubMed]

Hagemeier, J.

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Harris, D. K.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Hennessy, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Höfing, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Höfling, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Hu, C. Y.

A. B. Young, C. Y. Hu, J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Hu, E.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Hua, M.

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Hvam, J. M.

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Jelezko, F.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Johnson, T. J.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Kamp, M.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Karrai, K.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Katzer, D. S.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Kim, H.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[CrossRef] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Kimble, H. J.

L. M. Duan, H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

Kindermann, M.

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Knobel, R.

J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[CrossRef] [PubMed]

Krebs, O.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kwek, L. C.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Lanco, L.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Lee, K. H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

LemaÎtre, A.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Leosson, K.

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Li, J.

Q. Lin, J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[CrossRef]

Li, T.

Li, X.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[CrossRef]

Löffer, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Long, G. L.

G. R. Feng, G. F. Xu, G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[CrossRef] [PubMed]

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

G. L. Long, L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[CrossRef]

Loo, V.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Lukin, M. D.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Luo, Y. Q.

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Markov, I. L.

V. V. Shende, I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

V. V. Shende, I. L. Markov, S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[CrossRef]

Marshall, L. F.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

McMahon, P. L.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

Michael, C. P.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Mikkelsen, M. H.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

K. Nemoto, W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

Nakamura, Y.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

Nemoto, K.

K. Nemoto, W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Oh, C. H.

J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Oulton, R.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Painter, O.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Pashkin, Y. A.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Petroff, P.

Petroff, P. M.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Press, D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Rarity, J.

C. Y. Hu, W. J. Munro, J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Rarity, J. G.

A. B. Young, C. Y. Hu, J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Reichel, J.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Reitzenstein, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Reizenstein, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Ren, B. C.

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

Reuter, D.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Sagnes, I.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Samarth, N.

J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Schneider, C.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Senellart, P.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Shabaev, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Shende, V. V.

V. V. Shende, I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

V. V. Shende, I. L. Markov, S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[CrossRef]

Shi, Y. Y.

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Sjöqvist, E.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Smolin, J. A.

J. A. Smolin, D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[CrossRef] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Song, S. Y.

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Srinivasan, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Stavarache, V.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Steel, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

Stievater, T. H.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

Stoltz, N. G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Thijssen, A. C. T.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Thon, S.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

Toffoli, T.

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Tong, D. M.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

Truong, T. A.

Tsai, J. S.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

van Exter, M. P.

J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express 20, 24714 (2012).
[CrossRef] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

van Nieuwenburg, E.

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

Voisin, P.

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Walls, D. F.

D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Wang, H. F.

H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[CrossRef]

Wang, T. J.

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Wanger, D. D.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Warburton, R. J.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

Wei, H.

H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[CrossRef]

Wei, H. R.

H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef] [PubMed]

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[CrossRef]

H. R. Wei, F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, F. G. Deng, “Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef] [PubMed]

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

Wieck, A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Wilhelm, F. K.

J. Clarke, F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

Wrachtrup, J.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Wu, Y.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

Wüst, G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Xiao, L.

G. L. Long, L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[CrossRef]

Xu, G. F.

G. R. Feng, G. F. Xu, G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[CrossRef] [PubMed]

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

Xu, Z. Y.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Yacoby, A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

Yakovlev, D. R.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Yamamoto, T.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

Yamamoto, Y.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Yang, W. L.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[CrossRef]

Yeon, K. H.

H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[CrossRef]

Yin, Z. Q.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Young, A. B.

A. B. Young, C. Y. Hu, J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Yugova, I. A.

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

Zhang, B. Y.

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Zhang, J.

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

Zhang, S.

H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[CrossRef]

Zhu, A. D.

H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[CrossRef]

Appl. Phys. Lett. (7)

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010).
[CrossRef]

C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett. 95, 251104 (2009).
[CrossRef]

J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett. 98, 121111 (2011).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffer, S. Höfing, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

V. Loo, L. Lanco, A. LemaÎtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Int. J. Theor. Phys. (1)

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Laser Phys. Lett. (2)

B. C. Ren, H. R. Wei, F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[CrossRef]

B. C. Ren, F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[CrossRef]

Nat. Photonics (1)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010).
[CrossRef]

Nature (London) (6)

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature (London) 425, 941–944 (2003).
[CrossRef]

J. Clarke, F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Nature Chemistry (1)

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nature Chemistry 5, 602 (2013).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. A (12)

H. F. Wang, A. D. Zhu, S. Zhang, K. H. Yeon, “Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system,” Phys. Rev. A 87, 062337 (2013).
[CrossRef]

H. R. Wei, F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[CrossRef]

Q. Lin, J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).
[CrossRef]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).
[CrossRef] [PubMed]

G. L. Long, L. Xiao, “Parallel quantum computing in a single ensemble quantum computer,” Phys. Rev. A 69, 052303 (2004).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reizenstein, M. Kamp, S. Höfling, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

A. B. Young, C. Y. Hu, J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013).
[CrossRef]

T. J. Wang, S. Y. Song, G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

V. V. Shende, I. L. Markov, S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[CrossRef]

H. Wei, W. L. Yang, Z. B. Deng, M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008).
[CrossRef]

J. A. Smolin, D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855–2856 (1996).
[CrossRef] [PubMed]

J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Phys. Rev. B (5)

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, J. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Phys. Rev. Lett. (11)

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004).
[CrossRef] [PubMed]

G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek, “Nonadiabatic holonomic quantum computation in decoherence-free subspaces,” Phys. Rev. Lett. 109, 170501 (2012).
[CrossRef] [PubMed]

G. R. Feng, G. F. Xu, G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[CrossRef] [PubMed]

K. Nemoto, W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

L. M. Duan, H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. LemaÎtre, J. Hours, J. M. Gérard, J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

D. Birkedal, K. Leosson, J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef] [PubMed]

Quant. Inf. Comput. (1)

V. V. Shende, I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quant. Inf. Comput. 9, 0461–0468 (2009).

Quantum Inf. Comput. (1)

Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput. 3, 084–092 (2003).

Science (6)

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef] [PubMed]

A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science 313, 341–345 (2006).
[CrossRef] [PubMed]

J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, “Ultrafast manipulation of electron spin coherence,” Science 292, 2458–2461 (2001).
[CrossRef] [PubMed]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef] [PubMed]

Other (2)

D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of a coupled single-side QD-cavity system. (b) The energy-level structure of a QD-cavity system [12,13]. |↑〉 → |↑↓⇑〉 is driven by the left-circularly polarized photon (|L〉) and |↓〉 → |↓↑⇓〉 is driven by the right-circularly polarized photon (|R〉), respectively.

Fig. 2
Fig. 2

Compact quantum circuit for deterministically implementing a CNOT gate on two QD electron-spin qubits with a single-photon medium. The polarizing beam splitter PBSi (i = 1, 2, 3, 4) in the basis {|R〉, |L〉} transmits the R-polarized photon and reflects the L-polarized photon. BS is a 50:50 beam splitter. The ±–PBS transmits the photon in the state | + = ( | R + | L ) / 2 and reflects the photon in the state | = ( | R | L ) / 2. The half wave plate (HWP) set to 22.5° induces the transformations | R H p ( | R + | L ) / 2 and | L H p ( | R | L ) / 2. D+ and D represent two single-photon detectors.

Fig. 3
Fig. 3

Compact quantum circuit for deterministically implementing a Toffoli gate on three stationary electron-spin qubits in QDs with the input-output processes of a single-photon medium.

Fig. 4
Fig. 4

Compact quantum circuit for determinately implementing a Fredkin gate on three QD-spin qubits with the input-output processes of a single-photon medium. Wave plate WP performs a Hadamard operation on the photon who goes through it two times in succession.

Fig. 5
Fig. 5

The fidelities of our universal quantum gates vs the coupling strength g/(κ + κs) and the side leakage rate κs. (a) The fidelity of our CNOT gate (FC). (b) The fidelity of our Toffoli gate (FT). (c) The fidelity of our Fredkin gate (FF). We take ω = ωc = ωX and γ/κ = 0.1.

Fig. 6
Fig. 6

The efficiencies of our universal quantum gates vs the coupling strength g/(κ + κs) and the side leakage rate κs. (a) The efficiency of our CNOT gate (ηC). (b) The efficiency of our Toffoli gate (ηT). (c) The efficiency of our Fredkin gate (ηF). We take ω = ωc = ωX and γ/κ = 0.1.

Tables (2)

Tables Icon

Table 1 The relations between the measurement outcomes of the single photon and the classical feed-forward operations for implementing the Toffoli gate on the three stationary electron-spin qubits. σz = |↑〉〈↑| − |↓〉〈↓|. I2 = |↑〉〈↑| + |↓〉〈↓| is a 2 × 2 unit operation which means doing nothing on a qubit.

Tables Icon

Table 2 The relations between the measurement outcomes of the photon and the feed-forward operations for achieving a Fredkin gate on the three-qubit electron-spin system.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

r ( ω ) = | r ( ω ) | e i φ ( ω ) = 1 κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ 2 + κ s 2 ] + g 2
d a ^ d t = [ i ( ω c ω ) + κ 2 + κ s 2 ] a ^ g σ κ a ^ in + H ^ , d σ d t = [ i ( ω X ω ) + γ 2 ] σ g σ z a ^ + G ^ , a ^ out = a ^ in + κ a ^ .
( | R + | L ) | cav ( e i φ 0 | R + e i φ h | L ) | = e i φ 0 ( | R + e i ( φ h φ 0 ) | L ) | , ( | R + | L ) | cav e i φ h | R | + e i φ 0 | L | = e i φ 0 ( e i ( φ h φ 0 ) | R + | L ) | .
| R | cav | R | , | L | cav | L | , | R | cav | R | , | L | cav | L | .
| ψ in e = | c ( α 1 | t + α 2 | t ) + | c ( α 3 | t + α 4 | t ) .
| R H p 1 2 ( | R + | L ) , | L H p 1 2 ( | R | L ) .
| H e 1 2 ( | + | ) , | H e 1 2 ( | | ) .
| ψ p | ψ in e | R 9 | c ( α 1 | t + α 2 | t ) + | L 9 | c ( α 3 | t + α 4 | t ) .
| ψ in e CNOT | ψ out e = α 1 | c | t + α 2 | c | t + α 3 | c | t + α 4 | c | t .
| Ξ in e = | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Ξ 0 = | Ξ p | Ξ in e , | Ξ 1 = | L 5 | c 1 | c 2 ( α 1 | t + α 2 | t ) + | L 5 | c 1 | c 2 ( α 3 | t + α 4 | t ) + | R 5 | c 1 | c 2 ( α 5 | t + α 6 | t ) + | R 5 | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Ξ 2 = | L 18 | c 1 | c 2 ( α 1 | t + α 2 | t ) + | R 18 | c 1 | c 2 ( α 3 | t + α 4 | t ) + | R 19 | c 1 | c 2 ( α 5 | t + α 6 | t ) + | L 19 | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Ξ 3 = | L 18 | c 1 | c 2 ( α 1 | t + α 2 | t ) + | R 18 | c 1 | c 2 ( α 3 | t + α 4 | t ) + | R 23 | c 1 | c 2 ( α 5 | t + α 6 | t ) + | L 23 | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| R 18 BS 1 2 ( | R 24 + | R 25 ) , | L 18 BS 1 2 ( | L 24 + | L 25 ) , | R 23 BS 1 2 ( | R 24 | R 25 ) , | L 23 BS 1 2 ( | L 24 | L 25 ) ,
BS | Ξ 4 = | + 26 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) ] + | 27 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) | c 1 | c 2 ( α 7 | t + α 8 | t ) ] + | + 28 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) | c 1 | c 2 ( α 5 | t + α 6 | t ) | c 1 | c 2 ( α 7 | t + α 8 | t ) ] + | 29 2 [ | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) ] .
| Ξ out e = | c 1 | c 2 ( α 1 | t + α 2 | t ) + | c 1 | c 2 ( α 3 | t + α 4 | t ) + | c 1 | c 2 ( α 5 | t + α 6 | t ) + | c 1 | c 2 ( α 7 | t + α 8 | t ) .
| Π in e = | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) + | c | t 1 ( α 5 | t 2 + α 6 | t 2 ) + | c | t 1 ( α 7 | t 2 + α 8 | t 2 ) .
| Π 0 = | Π p | Π in e , | Π 1 = | L 5 | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | L 5 | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) + | R 5 | c | t 1 ( α 5 | t 2 + α 6 | t 2 ) + | R 5 | c | t 1 ( α 7 | t 2 + α 8 | t 2 ) .
| Ξ 2 = | c | t 1 ( α 1 | L 22 | t 2 + α 2 | R 22 | t 2 ) + | c | t 1 ( α 1 | R 22 | t 2 + α 2 | L 22 | t 2 ) + | c | t 1 ( α 1 | R 20 | t 2 + α 2 | L 20 | t 2 ) + | c | t 1 ( α 1 | L 20 | t 2 + α 2 | R 20 | t 2 ) .
| Ξ 3 = | c | t 1 ( α 1 | L 22 | t 2 + α 2 | R 22 | t 2 ) + | c | t 1 ( α 3 | R 22 | t 2 + α 4 | L 22 | t 2 ) + | c ( α 5 | R 21 | t 1 + α 6 | L 21 | t 1 | t 2 + | c ( α 7 | L 21 | t 1 + α 8 | R 21 | t 1 | t 2 .
| Ξ 4 = | + 25 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) + | c ( α 5 | t 1 + α 6 | t 1 ) | t 2 + | c ( α 7 | t 1 + α 8 | t 1 ) | t 2 ] + | 26 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 α 4 | t 2 ) + | c ( α 5 | t 1 α 6 | t 1 ) | t 2 + | c ( α 7 | t 1 + α 8 | t 1 ) | t 2 ] + | + 27 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 + α 4 | t 2 ) | c ( α 5 | t 1 + α 6 | t 1 ) | t 2 | c ( α 7 | t 1 + α 8 | t 1 ) | t 2 ] + | 28 2 [ | c | t 1 ( α 1 | t 2 + α 2 | t 2 ) + | c | t 1 ( α 3 | t 2 α 4 | t 2 ) + | c ( α 5 | t 1 + α 6 | t 1 ) | t 2 + | c ( α 7 | t 1 α 8 | t 1 ) | t 2 ] .
| Π out e = | c ( α 1 | t 1 | t 2 + α 2 | t 1 | t 2 ) + | c ( α 3 | t 1 | t 2 + α 4 | t 1 | t 2 ) + | c ( α 5 | t 1 | t 2 + α 6 | t 1 | t 2 ) + | c ( α 7 | t 1 | t 2 + α 8 | t 1 | t 2 ) .
| R | cav | r 0 | | R | , | L | cav | r h | | L | , | R | cav | r h | | R | , | L | cav | r 0 | | L | .
F = | Ψ real | Ψ ideal | 2 ,
η = n out / n in .
F C = 1 2 × ( 1 + 2 | r h | + | r 0 | | r h | ) / [ ( 1 + | r h | ) 2 + ( 1 | r 0 | ) 2 + | r h | 2 ( 1 | r h | ) 2 + | r h | 2 ( 1 + | r 0 | ) 2 ] ,
F T = 1 4 × ( 3 + 2 | r 0 | + | r h | [ 5 + | r h | + | r 0 | ( 4 + | r 0 | ) ] ) / ( ( 1 + | r h | ) 4 + 2 ( | r h | 2 1 ) 2 + 2 ( | r h | 1 ) 2 ( | r 0 | 1 ) 2 + ( | r 0 | 1 ) 4 + 2 ( | r 0 | 2 1 ) 2 + 4 ( 1 + | r h | 2 ( 1 + | r 0 | 2 ) + | r h | 2 [ ( | r h | 1 ) 2 + ( 1 + | r 0 | ) 2 ] 2 ) ,
F F = 1 8 × [ 4 ( 1 + | r h | ) ( 1 + | r 0 | | r h | ) + 2 ( 2 + | r 0 | + | r h | ) ( 2 + | r 0 | 2 + | r h | 2 ) + ( 1 + | r 0 | ) ( 4 | r h | 2 | r h | 4 + 2 | r h | 3 | r 0 | + 2 | r h | | r 0 | 3 + | r 0 | 4 ) ] / ( [ ( | r h | 1 ) 2 + ( 1 + | r 0 | ) 2 ] [ 4 + 2 ( | r h | | r 0 | 2 ) + ( | r h | 2 + | r 0 | 2 ) 2 ] + 4 [ ( 1 + | r h | ) 2 + ( | r 0 | 1 ) 2 ] [ 8 + 2 ( | r h | 2 + | r 0 | 2 ) 2 ] + [ 2 + | r h | ( | r h | 2 ) + | r 0 | ( 2 + | r 0 | ) ] × [ | r h | 8 4 | r h | 7 | r 0 | + 4 | r h | 3 | r 0 | 5 + 8 | r h | 2 | r 0 | 6 + 4 | r h | | r 0 | 7 + | r 0 | 8 4 | r h | 5 | r 0 | ( | r 0 | 2 4 ) + 8 | r h | 6 ( | r 0 | 2 1 ) 2 | r h | 4 ( 4 | r 0 | 2 + | r 0 | 4 8 ) ] ) ,
η C = ( 2 + | r h | 2 + | r 0 | 2 ) 2 16 ,
η T = ( 2 + | r h | 2 + | r 0 | 2 ) 2 ( 6 + | r h | 2 + | r 0 | 2 ) 128 ,
η F = ( 2 + | r h | 2 + | r 0 | 2 ) [ 4 + ( | r h | 2 + | r 0 | 2 ) 2 ] [ 12 + ( | r h | 2 + | r 0 | 2 ) 2 ] 512 .
1 exp ( τ / T 2 ) ,

Metrics