Abstract

A pulsed-laser range finding based on differential optical-path is proposed, and the mathematical models are developed and verified. Based on the method, some simulations are carried out and important conclusions are deduced. (1) Background power is suppressed effectively. (2) Compared with signal-to-noise ratio (SNR) of traditional method, SNR of the proposed method is more suitable than traditional method in long-range finding and large tilt angle of target. (3) No matter what the tilt angle of target is, it always has optimal sensitivity of zero cross as long as the differential distance is equal to the light speed multiplied by the received pulse length and there is an overlap between two echoes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Richmond and S. C. Cain, in Direct-detection LADAR Systems (SPIE, 2010).
  2. G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
    [CrossRef]
  3. B. Schwarz, “Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
    [CrossRef]
  4. P. F. McManamon, “Errata: Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
    [CrossRef]
  5. M. Fridlund, “Future space missions to search for terrestrial planets,” Space Sci. Rev. 135(1-4), 355–369 (2008).
    [CrossRef]
  6. B. Kaldvee, A. Ehn, J. Bood, M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt. 48(4), B65–B72 (2009).
    [CrossRef] [PubMed]
  7. J. Yun, C. Gao, S. Zhu, C. Sun, H. He, L. Feng, L. Dong, L. Niu, “High-peak-power, single-mode, nanosecond pulsed, all-fiber laser for high resolution 3D imaging LIDAR system,” Chin. Opt. Lett. 10(12), 121402 (2012).
    [CrossRef]
  8. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [CrossRef] [PubMed]
  9. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [CrossRef]
  10. S. Kurtti and J. Kostamovaara, “An integrated receiver channel for a laser scanner,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (Congress Graz, Graz, Austria, 2012), pp. 1358–1361.
    [CrossRef]
  11. H. Lim, “Comparison of time corrections using charge amounts, peak values, slew rates, and signal widths in leading-edge discriminators,” Rev. Sci. Instrum. 74, 3115–3119 (2003).
    [CrossRef]
  12. M. Lee, S. Baeg, “Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit,” Proc. SPIE 8379, 83790Z (2012).
    [CrossRef]
  13. S. Mitchell, J. P. Thayer, M. Hayman, “Polarization lidar for shallow water depth measurement,” Appl. Opt. 49(36), 6995–7000 (2010).
    [CrossRef] [PubMed]
  14. T. R. Chevalier, O. K. Steinvall, “Laser radar modeling for simulation and performance evaluation,” Proc. SPIE 7482, 748206 (2009).
    [CrossRef]
  15. H. J. Kong, T. H. Kim, S. E. Jo, M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express 19(20), 19323–19329 (2011).
    [CrossRef] [PubMed]
  16. Y. Qin, T. T. Vu, Y. Ban, Z. Niu, “Range determination for generating point clouds from airborne small footprint LiDAR waveforms,” Opt. Express 20(23), 25935–25947 (2012).
    [CrossRef] [PubMed]
  17. F. Wang, Y. Zhao, Y. Zhang, X. Sun, “Range accuracy limitation of pulse ranging systems based on Geiger mode single-photon detectors,” Appl. Opt. 49(29), 5561–5566 (2010).
    [CrossRef] [PubMed]
  18. R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
    [CrossRef]
  19. Z. Zhang, Y. Zhao, Y. Zhang, L. Wu, J. Su, “A real-time noise filtering strategy for photon counting 3D imaging lidar,” Opt. Express 21(8), 9247–9254 (2013).
    [CrossRef] [PubMed]
  20. J. Yang, L. Qiu, W. Zhao, H. Wu, “Laser differential reflection-confocal focal-length measurement,” Opt. Express 20(23), 26027–26036 (2012).
    [CrossRef] [PubMed]
  21. S. Der, B. Redman, R. Chellappa, “Simulation of error in optical radar range measurements,” Appl. Opt. 36(27), 6869–6874 (1997).
    [CrossRef] [PubMed]
  22. S. E. Johnson, “Effect of target surface orientation on the range precision of laser detection and ranging systems,” J. Appl. Remote Sens. 3(1), 033564 (2009).
    [CrossRef]
  23. T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).
  24. M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
    [CrossRef]

2013 (1)

2012 (6)

J. Yang, L. Qiu, W. Zhao, H. Wu, “Laser differential reflection-confocal focal-length measurement,” Opt. Express 20(23), 26027–26036 (2012).
[CrossRef] [PubMed]

M. Lee, S. Baeg, “Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit,” Proc. SPIE 8379, 83790Z (2012).
[CrossRef]

Y. Qin, T. T. Vu, Y. Ban, Z. Niu, “Range determination for generating point clouds from airborne small footprint LiDAR waveforms,” Opt. Express 20(23), 25935–25947 (2012).
[CrossRef] [PubMed]

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[CrossRef]

P. F. McManamon, “Errata: Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[CrossRef]

J. Yun, C. Gao, S. Zhu, C. Sun, H. He, L. Feng, L. Dong, L. Niu, “High-peak-power, single-mode, nanosecond pulsed, all-fiber laser for high resolution 3D imaging LIDAR system,” Chin. Opt. Lett. 10(12), 121402 (2012).
[CrossRef]

2011 (3)

H. J. Kong, T. H. Kim, S. E. Jo, M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express 19(20), 19323–19329 (2011).
[CrossRef] [PubMed]

T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

2010 (3)

2009 (4)

2008 (1)

M. Fridlund, “Future space missions to search for terrestrial planets,” Space Sci. Rev. 135(1-4), 355–369 (2008).
[CrossRef]

2006 (1)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

2003 (1)

H. Lim, “Comparison of time corrections using charge amounts, peak values, slew rates, and signal widths in leading-edge discriminators,” Rev. Sci. Instrum. 74, 3115–3119 (2003).
[CrossRef]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

1997 (1)

Agishev, R.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

Aldén, M.

Baeg, S.

M. Lee, S. Baeg, “Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit,” Proc. SPIE 8379, 83790Z (2012).
[CrossRef]

Ban, Y.

Berkovic, G.

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[CrossRef]

Bood, J.

Buller, G. S.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[CrossRef] [PubMed]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Chapman, G.

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Chellappa, R.

Chevalier, T. R.

T. R. Chevalier, O. K. Steinvall, “Laser radar modeling for simulation and performance evaluation,” Proc. SPIE 7482, 748206 (2009).
[CrossRef]

Collins, R. J.

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Der, S.

Dong, L.

Edwards, J.

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Ehn, A.

Feng, L.

Fernández, V.

Fridlund, M.

M. Fridlund, “Future space missions to search for terrestrial planets,” Space Sci. Rev. 135(1-4), 355–369 (2008).
[CrossRef]

Gao, C.

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

Gross, B.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

Hall, D. N.

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Hayman, M.

He, H.

Ishii, T.

T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).

Jack, M.

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Jacobson, S. M.

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Jo, S. E.

Johnson, S. E.

S. E. Johnson, “Effect of target surface orientation on the range precision of laser detection and ranging systems,” J. Appl. Remote Sens. 3(1), 033564 (2009).
[CrossRef]

Kaldvee, B.

Kim, T. H.

Kong, H. J.

Krichel, N. J.

Lee, M.

M. Lee, S. Baeg, “Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit,” Proc. SPIE 8379, 83790Z (2012).
[CrossRef]

Lim, H.

H. Lim, “Comparison of time corrections using charge amounts, peak values, slew rates, and signal widths in leading-edge discriminators,” Rev. Sci. Instrum. 74, 3115–3119 (2003).
[CrossRef]

McCarthy, A.

McManamon, P. F.

P. F. McManamon, “Errata: Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[CrossRef]

Mitchell, S.

Moshary, F.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

Niu, L.

Niu, Z.

Oh, M. S.

Otani, K.

T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Qin, Y.

Qiu, L.

Redman, B.

Schwarz, B.

B. Schwarz, “Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

Shafir, E.

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[CrossRef]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Steinvall, O. K.

T. R. Chevalier, O. K. Steinvall, “Laser radar modeling for simulation and performance evaluation,” Proc. SPIE 7482, 748206 (2009).
[CrossRef]

Su, J.

Sun, C.

Sun, X.

Takashima, T.

T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).

Thayer, J. P.

Vu, T. T.

Wallace, A. M.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[CrossRef] [PubMed]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Wang, F.

Wehner, J.

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Wu, H.

Wu, L.

Xue, Y.

T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).

Yang, J.

Yun, J.

Zhang, Y.

Zhang, Z.

Zhao, W.

Zhao, Y.

Zhu, S.

Adv. Opt. Photonics (1)

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[CrossRef]

Appl. Opt. (5)

Chin. Opt. Lett. (1)

J. Appl. Remote Sens. (1)

S. E. Johnson, “Effect of target surface orientation on the range precision of laser detection and ranging systems,” J. Appl. Remote Sens. 3(1), 033564 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[CrossRef]

Nat. Photonics (1)

B. Schwarz, “Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

Opt. Eng. (1)

P. F. McManamon, “Errata: Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (1)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, S. Ahmed, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization,” Opt. Lasers Eng. 44(8), 779–796 (2006).
[CrossRef]

Proc. SPIE (3)

T. R. Chevalier, O. K. Steinvall, “Laser radar modeling for simulation and performance evaluation,” Proc. SPIE 7482, 748206 (2009).
[CrossRef]

M. Lee, S. Baeg, “Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit,” Proc. SPIE 8379, 83790Z (2012).
[CrossRef]

M. Jack, J. Wehner, J. Edwards, G. Chapman, D. N. Hall, S. M. Jacobson, “HgCdTe APD-based linear-mode photon counting components and Ladar receivers,” Proc. SPIE 8033, 80330M (2011).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

T. Ishii, K. Otani, T. Takashima, Y. Xue, “Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions,” Prog. Photovolt. Res. Appl. 21, 481–489 (2011).

Rev. Sci. Instrum. (1)

H. Lim, “Comparison of time corrections using charge amounts, peak values, slew rates, and signal widths in leading-edge discriminators,” Rev. Sci. Instrum. 74, 3115–3119 (2003).
[CrossRef]

Space Sci. Rev. (1)

M. Fridlund, “Future space missions to search for terrestrial planets,” Space Sci. Rev. 135(1-4), 355–369 (2008).
[CrossRef]

Other (2)

S. Kurtti and J. Kostamovaara, “An integrated receiver channel for a laser scanner,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (Congress Graz, Graz, Austria, 2012), pp. 1358–1361.
[CrossRef]

R. D. Richmond and S. C. Cain, in Direct-detection LADAR Systems (SPIE, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Pulsed-laser range finding system structure based on differential optical path. BS-beam splitter, TL-transmitting lens, RL-receiving lens, PD-photo detector, APD-avalanche photo diode, CL-convergent lens, SC- stage controller.

Fig. 2
Fig. 2

Difference between differential echo and echo of peak discriminator.

Fig. 3
Fig. 3

Schematic diagram of pulsed-laser range finding.

Fig. 4
Fig. 4

Comparison between background power and echo signal power. (a) is under the condition that range is 18km. (b) is under the condition that range is 19km. (c) is under the condition that range is 20km. (d) is under the condition that range is 21km.

Fig. 5
Fig. 5

Differential echo signal at different ranges. (a) Range between system and target is 20km. (b) Range between system and target is 21km.

Fig. 6
Fig. 6

Comparision of echo signal under different tilt angle of target. (a) The echo pulse is broadened with growth of tilt angle. (b) The position of the zero cross is not affected by pulse broadening.

Fig. 7
Fig. 7

Echo signals from APD A, APD B and differential echo signal under the different differential distance. (a) Differential distance is r/3. (b) Differential distance is r/2. (c) Differential distance is r. (d) Differential distance is 3r.

Fig. 8
Fig. 8

Differential echoes at different differential distance.

Fig. 9
Fig. 9

Relation between sensitivity of zero crossing and differential distance.

Fig. 10
Fig. 10

Comparison of SNR between the traditional method and the proposed method. (a) Relation between SNR, range and tilt angle in the traditional method. (b) Relation between SNR, range and tilt angle in the proposed method.

Fig. 11
Fig. 11

Relationship between △SNR and R, θ.

Fig. 12
Fig. 12

Deviation of zero-crossing from peak position.

Fig. 13
Fig. 13

Principal of calibrating inconsistence of two receivers.

Tables (1)

Tables Icon

Table 1 Correction Factor under Different Visibility

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

{ l 1 + l 2 = l 0 +d l 1 + l 3 = l 0 d .
P t ( t )= E t τ 2π exp( t 2 2 τ 2 ),
{ P r ( t )= E t T a 2 T o η D ρ r 2π τ r exp[ 1 2τ r 2 ( t 2R c ) 2 ] τ r 2 = τ 2 + tan 2 ( θ ) w 2 ( z ) c 2 w( z )= w 0 [ 1+ ( λz π w 0 2 ) 2 ] ,
{ P r1 ( t )= E t T a 2 T o η D ρ r 2 2π τ r exp[ 1 2τ r 2 ( t 2Rd c ) 2 ] P r2 ( t )= E t T a 2 T o η D ρ r 2 2π τ r exp[ 1 2τ r 2 ( t 2R+d c ) 2 ] .
P B = ρ r h sun T o A r sin ( α/2 ) 2 Δλ,
{ P rB1 ( t )= E t T a 2 T o η D ρ r 2 2π τ r exp[ 1 2τ r 2 ( t 2Rd c ) 2 ]+ P B P rB2 ( t )= E t T a 2 T o η D ρ r 2 2π τ r exp[ 1 2τ r 2 ( t 2R+d c ) 2 ]+ P B ,
P rd ( t )= P rB2 ( t ) P rB1 ( t ) = E t T a 2 T o η D ρ r 2 2π τ r { exp[ 1 2τ r 2 ( t 2R+d c ) 2 ]exp[ 1 2τ r 2 ( t 2Rd c ) 2 ] },
( t 2Rd c ) 2 = ( t 2R+d c ) 2 t= 2R c .
k d = E t T a 2 T o η D ρ r 2 2π τ r [ ( u 2 τ r 2 )exp( u 2 2 2 τ r 2 )( u 1 τ r 2 )exp( u 1 2 2 τ r 2 ) ],
k d | t=2R/c = d τ r 2 c exp[ 1 2 τ r 2 ( d c ) 2 ] E t T a 2 T o η D ρ r 2π τ r .
f ' d = E t T a 2 T o η D ρ r 2π τ r { 1 τ r 2 c exp[ 1 2 τ r 2 ( d c ) 2 ]+ d τ r 2 c exp[ 1 2 τ r 2 ( d c ) 2 ] d c 1 τ r 2 c }.
d=c τ r .
SNR= ρ D 2 P r 2 σ n 2 = ρ D 2 P r 2 2eB( ρ D P r + ρ D P B )+2eB i DK +4kTB/ R TH , = η D P r 2 B[ 2hf( P r + P B )+ h 2 f 2 e 2 η D ( 2e i DK + 4kT R TH ) ]
σ ¯ nd 2 =2eB ρ D P rd +2eB( i DK1 + i DK2 )+4kTB( 1 R TH1 + 1 R TH2 ) =2B[ e ρ D P rd +e( i DK1 + i DK2 )+2kT( 1 R TH1 + 1 R TH2 ) ],
SN R d = η D P rd 2 2B{ hf P rd + h 2 f 2 e 2 η D [ e( i DK1 + i DK2 )+2kT( 1 R TH1 + 1 R TH2 ) ] } .
γ( λ )= 3.91 R v ( 550 λ ) q

Metrics