Abstract

Poor thermal stability has remained a severe obstacle for practical applications of optical fiber amplifiers based on quantum dots (QDs). We demonstrate that thermal stability at elevated temperatures can be achieved by using oleic-acid-capped QDs. Optical fiber amplifiers using oleic-acid-capped QDs for the gain medium exhibited stable gain of more than 5 dB at 1550 nm between 25 °C and 50 °C that did not degrade upon cooling. In contrast, fiber amplifiers employing oleylamine-capped QDs exhibited reduced gain when heated and subsequently cooled.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
    [CrossRef] [PubMed]
  2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
    [CrossRef] [PubMed]
  3. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [CrossRef]
  4. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
    [CrossRef]
  5. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [CrossRef] [PubMed]
  6. T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
    [CrossRef]
  7. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
    [CrossRef] [PubMed]
  8. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
    [CrossRef]
  9. Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
    [CrossRef] [PubMed]
  10. M. Matsuura, N. Calabretta, O. Raz, H. J. S. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011).
    [CrossRef] [PubMed]
  11. C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
    [CrossRef]
  12. P. R. Watekar, L. Aoxiang, J. Seongmin, and H. Won-Taek, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in OFC/NFOEC 2008. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), pp. 3030–3032.
    [CrossRef]
  13. S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” in CLEO '07.2007 Conference on Lasers and Electro-Optics (2007), pp. 1343–1344.
    [CrossRef]
  14. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
    [CrossRef]
  15. F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
    [CrossRef] [PubMed]
  16. X. Sun, Y. Dong, C. Li, X. Liu, G. Liu, and L. Xie, “PbSe quantum dots fiber amplifier based on sol-gel self-assembly method,” in Passive Components and Fiber-Based Devices VII, P. P. Shum, ed. (SPIE, 2011).
  17. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
    [CrossRef] [PubMed]
  18. H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
    [CrossRef]
  19. H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
    [CrossRef]
  20. X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
    [CrossRef] [PubMed]
  21. B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
    [CrossRef] [PubMed]
  22. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
    [CrossRef] [PubMed]
  23. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
    [CrossRef] [PubMed]
  24. S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
    [CrossRef] [PubMed]
  25. S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
    [CrossRef] [PubMed]

2013

X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
[CrossRef] [PubMed]

H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[CrossRef]

2012

2011

M. Matsuura, N. Calabretta, O. Raz, H. J. S. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011).
[CrossRef] [PubMed]

C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[CrossRef]

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

2010

2009

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

2008

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
[CrossRef]

X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

2007

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

2006

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

2005

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[CrossRef]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

2004

S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[CrossRef] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

2000

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Amassian, A.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

An, Z.

Asbury, J. B.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Aviles-Espinosa, R.

Bardella, P.

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Bertolotti, J.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Bimberg, D.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Boeberl, M.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Bonk, R.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Brzozowski, L.

V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Cademartiri, L.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Calabretta, N.

Capua, A.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Cataluna, M. A.

Cha, D.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Chen, Z.

Cheng, C.

C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[CrossRef]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
[CrossRef]

Cheng, X.

C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[CrossRef]

Chou, K. W.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Copenhaver, D.

X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

De Geyter, B.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

de Mello Donegá, C.

S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[CrossRef] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

Debnath, R.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Ding, Y.

Dorren, H. J. S.

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Duan, G.-H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Eisenstein, G.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Fischer, A.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Fritzinger, B.

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

Fuerst, J.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Furukawa, M.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Guo, H.

H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[CrossRef]

H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[CrossRef]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[CrossRef] [PubMed]

Haustraete, K.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

Hayden, O.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Heiss, W.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Hens, Z.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

Hesser, G.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Hinds, S.

V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Hoogland, S.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Jeong, K. S.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Ji, X.

X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

Jiang, H.

C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[CrossRef]

Justo, Y.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

Kapsalis, A.

Kemp, K. W.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Kim, J.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Koole, R.

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

Kost, A. R.

Kovalenko, M. V.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Kovsh, A. R.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Krakowski, M.

Krestnikov, I.

Krestnikov, I. L.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Laemmlin, M.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Le Gouezigou, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lemmer, U.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Leuthold, J.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Levina, L.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Liebich, S.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Liu, H.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Livshits, D.

Lommens, P.

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

Loza-Alvarez, P.

Ma, D.

C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[CrossRef]

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Martins, J. C.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

Matsuura, M.

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Meijerink, A.

S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[CrossRef] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

Mesaritakis, C.

Meuer, C.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Montrosset, I.

Moreels, I.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

Nikitichev, D.

Ozin, G. A.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Pang, F.

X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
[CrossRef] [PubMed]

H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[CrossRef]

H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[CrossRef]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[CrossRef] [PubMed]

Peng, X.

X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Rafailov, E.

Rauch, T.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Raz, O.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Robert, Y.

Rossetti, M.

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Ruiz, M.

Sapienza, R.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Sargent, E. H.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[CrossRef]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Sichmeller, C.

X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

Simos, H.

Sukhovatkin, V.

V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Sun, X.

Syvridis, D.

Tang, J.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Tedde, S. F.

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Tran, M.

Vallaitis, T.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

van Houselt, A.

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

von Freymann, G.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Wang, J.

Wang, T.

X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, Z. An, “Optical fiber amplifiers based on PbS/CdS QDs modified by polymers,” Opt. Express 21(7), 8214–8219 (2013).
[CrossRef] [PubMed]

H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[CrossRef]

H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[CrossRef]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[CrossRef] [PubMed]

Wang, X.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

Wiersma, D. S.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Wuister, S. F.

S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[CrossRef] [PubMed]

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

Xie, L.

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Xu, T.

Yan, J.

Zeng, X.

H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[CrossRef]

H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[CrossRef]

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
[CrossRef] [PubMed]

Zhang, S. G.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Zhou, W.

ACS Nano

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, Z. Hens, “Size-tunable, bright, and stable pbs quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[CrossRef] [PubMed]

Adv. Mater.

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

S. F. Wuister, A. van Houselt, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, “Temperature antiquenching of the luminescence from capped CdSe quantum dots,” Angew. Chem. Int. Ed. Engl. 43(23), 3029–3033 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, D. Bimberg, A. Capua, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. R. Kovsh, I. L. Krestnikov, “40 GHz small-signal cross-gain modulation in 1.3 μm quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 93(5), 051110 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 mu m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

J. Am. Chem. Soc.

X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, “Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals,” J. Am. Chem. Soc. 130(17), 5726–5735 (2008).
[CrossRef] [PubMed]

B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, J. C. Martins, “In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy,” J. Am. Chem. Soc. 131(8), 3024–3032 (2009).
[CrossRef] [PubMed]

S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Luminescence Temperature Antiquenching of Water-Soluble CdTe Quantum Dots: Role of the Solvent,” J. Am. Chem. Soc. 126(33), 10397–10402 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Phys. Chem. B

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Nat. Mater.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[CrossRef] [PubMed]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Nat. Photonics

T. Rauch, M. Boeberl, S. F. Tedde, J. Fuerst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Opt. Commun.

C. Cheng, H. Jiang, D. Ma, X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[CrossRef]

H. Guo, F. Pang, X. Zeng, T. Wang, “PbS quantum dot fiber amplifier based on a tapered SMF fiber,” Opt. Commun. 285(13-14), 3222–3227 (2012).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

H. Guo, F. Pang, X. Zeng, T. Wang, “Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler,” Opt. Fiber Technol. 19(2), 143–147 (2013).
[CrossRef]

Science

V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Other

X. Sun, Y. Dong, C. Li, X. Liu, G. Liu, and L. Xie, “PbSe quantum dots fiber amplifier based on sol-gel self-assembly method,” in Passive Components and Fiber-Based Devices VII, P. P. Shum, ed. (SPIE, 2011).

P. R. Watekar, L. Aoxiang, J. Seongmin, and H. Won-Taek, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in OFC/NFOEC 2008. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), pp. 3030–3032.
[CrossRef]

S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” in CLEO '07.2007 Conference on Lasers and Electro-Optics (2007), pp. 1343–1344.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PL spectra of PbS QDs in chloroform (A) and PL intensity temperature profiles in 1-octadecene (B).

Fig. 2
Fig. 2

The test set-up for quantum dots fiber amplifiers.

Fig. 3
Fig. 3

Output spectra with input signal only, pump only, and signal + pump for fiber amplifiers based on OLAm-QDs (A) and OLA-QDs (B). Dependence of gain at 1550 nm on pump power for fiber amplifiers based on OLAm-QDs and OLA-QDs (C).

Fig. 4
Fig. 4

Temperature-dependent gain of QDs-based optical fiber amplifiers at a pump power of 100 mW.

Metrics