Abstract

We present theoretically derived design rules for an absorbing resonance antireflection coating for the spectral range of 100 – 400 nm, applied here on top of a molybdenum-silicon multilayer mirror (Mo/Si MLM) as commonly used in extreme ultraviolet lithography. The design rules for optimal suppression are found to be strongly dependent on the thickness and optical constants of the coating. For wavelengths below λ ∼ 230 nm, absorbing thin films can be used to generate an additional phase shift and complement the propagational phase shift, enabling full suppression already with film thicknesses far below the quarter-wave limit. Above λ ∼ 230 nm, minimal absorption (k < 0.2) is necessary for low reflectance and the minimum required layer thickness increases with increasing wavelength slowly converging towards the quarter-wave limit.

As a proof of principle, SixCyNz thin films were deposited that exhibit optical constants close to the design rules for suppression around 285 nm. The thin films were deposited by electron beam co-deposition of silicon and carbon, with N+ ion implantation during growth and analyzed with variable angle spectroscopic ellipsometry to characterize the optical constants. We report a reduction of reflectance at λ = 285 nm, from 58% to 0.3% for a Mo/Si MLM coated with a 20 nm thin film of Si0.52C0.16N0.29.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Tischler, M. S. Bradley, V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31, 2045–2047 (2006).
    [CrossRef] [PubMed]
  2. M. M. J. W. van Herpen, R. W. E. van de Kruijs, D. J. W. Klunder, E. Louis, A. E. Yakshin, S. A. van der Westen, F. Bijkerk, V. Banine, “Spectral-purity-enhancing layer for multilayer mirrors,” Opt. Lett. 33, 560–562 (2008).
    [CrossRef] [PubMed]
  3. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
    [CrossRef]
  4. M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
    [CrossRef]
  5. X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
    [CrossRef]
  6. V. Banine, R. Moors, “Plasma sources for euv lithography exposure tools,” J. Phys. D: Appl. Phys. 37, 3207 (2004).
    [CrossRef]
  7. J. Jonkers, “High power extreme ultra-violet (euv) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8 (2006).
    [CrossRef]
  8. R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
    [CrossRef]
  9. Abèles, Florin, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–309 (1950).
    [CrossRef]
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  11. R. Soufli, E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region,” Appl. Opt. 36, 5499–5507 (1997).
    [CrossRef] [PubMed]
  12. R. Soufli, E. M. Gullikson, “Absolute photoabsorption measurements of molybdenum in the range 60–930 ev for optical constant determination,” Appl. Opt. 37, 1713–1719 (1998).
    [CrossRef]
  13. B. Henke, E. Gullikson, J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” At. Data and Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]

2013 (1)

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

2012 (2)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
[CrossRef]

2008 (1)

2006 (2)

2004 (1)

V. Banine, R. Moors, “Plasma sources for euv lithography exposure tools,” J. Phys. D: Appl. Phys. 37, 3207 (2004).
[CrossRef]

1999 (1)

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

1998 (1)

1997 (1)

1993 (1)

B. Henke, E. Gullikson, J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” At. Data and Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

1950 (1)

Abèles, Florin, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–309 (1950).
[CrossRef]

Abèles,

Abèles, Florin, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–309 (1950).
[CrossRef]

Banine, V.

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Bijkerk, F.

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
[CrossRef]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Bradley, M. S.

Brainard, R. L.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Bulovic, V.

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
[CrossRef]

Chambers, J.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Cobb, J.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Connolly, S.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Davis, J.

B. Henke, E. Gullikson, J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” At. Data and Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Feng, J.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

Florin,

Abèles, Florin, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–309 (1950).
[CrossRef]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
[CrossRef]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Gullikson, E.

B. Henke, E. Gullikson, J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” At. Data and Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Gullikson, E. M.

Gunn, S.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Henderson, C.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Henke, B.

B. Henke, E. Gullikson, J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” At. Data and Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Jonkers, J.

J. Jonkers, “High power extreme ultra-violet (euv) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8 (2006).
[CrossRef]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
[CrossRef]

Klunder, D. J. W.

Li, X.-B.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Louis, E.

Mackevich, J. F.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Moors, R.

V. Banine, R. Moors, “Plasma sources for euv lithography exposure tools,” J. Phys. D: Appl. Phys. 37, 3207 (2004).
[CrossRef]

Okoroanyanwu, U.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Rao, V.

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Song, J.-F.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

Soufli, R.

Sun, H.-B.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

Tischler, J. R.

van de Kruijs, R. W. E.

van der Westen, S. A.

van Herpen, M. M. J. W.

Yakshin, A. E.

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

Zhang, X.-L.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[CrossRef]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, H.-B. Sun, “Anti-reflection resonance in distributed bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells,” Appl. Phys. Lett. 102, 103901 (2013).
[CrossRef]

At. Data and Nucl. Data Tables (1)

B. Henke, E. Gullikson, J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” At. Data and Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

V. Banine, R. Moors, “Plasma sources for euv lithography exposure tools,” J. Phys. D: Appl. Phys. 37, 3207 (2004).
[CrossRef]

J. Phys. Radium (1)

Abèles, Florin, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–309 (1950).
[CrossRef]

J. Vac. Sci. Technol., B (1)

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol., B 17, 3384–3389 (1999).
[CrossRef]

Nature Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. 1220–24(2012).
[CrossRef]

Opt. Lett. (2)

Plasma Sources Sci. Technol. (1)

J. Jonkers, “High power extreme ultra-violet (euv) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8 (2006).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Examples of calculated reflectance for a Mo/Si MLM coated with a single layer AARC with thickness (a,c) d = 2 nm and (b,d) d = 25 nm, as a function of the refractive index n and extinction coefficient k of the AARC, for (a,b) λ = 150 nm and (c,d) λ = 350 nm. The contour surface in the nk-plane is a projection of the three-dimensional reflectance surface onto the nk-plane. The vertical axis of the threedimensional surfaces represents the reflectance on a linear scale, whereas the colour map represents the reflectance on a logarithmic scale.

Fig. 2
Fig. 2

The range of AARC parameters, (a) thickness, (b) refractive index and (c) extinction coefficient for which a solution of R(λ, d, n, k) < 10−3 is found. In (a) the red dashed line indicates the minimum thickness at each wavelength for which the reflectance constraint can be satisfied. The corresponding values for n and k are indicated by the same dashed red line in (b) and (c), respectively. The vertical black dotted-dashed line marks the division of the two wavelength ranges as discussed in detail in the text.

Fig. 3
Fig. 3

Optical constants for three SiCN thin films with varying stoichiometry obtained by variable angle spectroscopic ellipsometry. (a) The refractive index. (b) The extinction coefficient. The green colored areas in panel (a) and (b) correspond to the colored areas in Figs. 2(b) and Figs. 2(c) respectively

Fig. 4
Fig. 4

Calculated (solid lines) and measured (symbols) EUV (a) and DUV (b) reflectance of a Mo/Si MLM without (red markers) and with a 20 nm film of Si0.52C0.16N0.29 on top (blue markers).

Metrics