Abstract

The fabrication and characterization of high quality ultra-long (up to 1m) fiber Bragg gratings (FBGs) is reported. A moving phase mask and an electro-optic phase-modulation (EOPM) based interferometer are used with a high precision 1-meter long translation stage and compared. A novel interferometer position feedback scheme to simplify the fabrication process is proposed and analyzed. The ultra-long uniform FBGs show near perfect characteristics of a few picometers bandwidth, symmetrical, near theory-matching group-delay and transmission spectra. Grating characterization using optical backscattering reflectometry and chirped FBGs are also demonstrated. Limitations of the schemes are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  3. R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
    [CrossRef]
  4. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
    [CrossRef]
  5. A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
    [CrossRef]
  6. Y. Liu, J. J. Pan, C. Gu, L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
    [CrossRef]
  7. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, P.-Y. Fonjallaz, “Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source,” Appl. Opt. 41(6), 1051–1056 (2002).
    [CrossRef] [PubMed]
  8. K. M. Chung, L. Dong, C. Lu, H. Y. Tam, “Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control,” Opt. Express 19(13), 12664–12672 (2011).
    [CrossRef] [PubMed]
  9. Y. Liu, L. Dong, J. J. Pan, C. Gu, “Strong phase-controlled fiber Bragg gratings for dispersion compensation,” Opt. Lett. 28(10), 786–788 (2003).
    [CrossRef] [PubMed]
  10. T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9(7), 934–936 (1997).
    [CrossRef]
  11. V. Perlin, H. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
    [CrossRef]
  12. P. Petropoulos, M. Ibsen, A. D. Ellis, D. J. Richardson, “Rectangularpulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
    [CrossRef]
  13. H. Shahoei, J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express 20(13), 14009–14014 (2012).
    [CrossRef] [PubMed]
  14. M. Gagné, L. Bojor, R. Maciejko, R. Kashyap, “Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry,” Opt. Express 16(26), 21550–21557 (2008).
    [CrossRef] [PubMed]
  15. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
    [CrossRef]
  16. M. Gagné, R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
    [CrossRef] [PubMed]
  17. R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
    [CrossRef]
  18. M. Gagné, R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

M. Gagné, R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[CrossRef]

2009 (1)

2008 (1)

2004 (1)

Y. Liu, J. J. Pan, C. Gu, L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (2)

1997 (2)

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9(7), 934–936 (1997).
[CrossRef]

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

1996 (1)

R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
[CrossRef]

1995 (3)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Armes, D. J.

R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
[CrossRef]

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

Asseh, A.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Bojor, L.

Chung, K. M.

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef]

Cotter, D.

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

Dong, L.

Ellis, A. D.

Fonjallaz, P.-Y.

Friberg, A. T.

Froehlich, H.-G.

R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Gagné, M.

Gu, C.

Y. Liu, J. J. Pan, C. Gu, L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, C. Gu, “Strong phase-controlled fiber Bragg gratings for dispersion compensation,” Opt. Lett. 28(10), 786–788 (2003).
[CrossRef] [PubMed]

Helmfrid, S.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Ibsen, M.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kashyap, R.

M. Gagné, R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[CrossRef]

M. Gagné, R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[CrossRef] [PubMed]

M. Gagné, L. Bojor, R. Maciejko, R. Kashyap, “Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry,” Opt. Express 16(26), 21550–21557 (2008).
[CrossRef] [PubMed]

R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
[CrossRef]

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Komukai, T.

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9(7), 934–936 (1997).
[CrossRef]

Laming, R. I.

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

Liu, Y.

Y. Liu, J. J. Pan, C. Gu, L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, C. Gu, “Strong phase-controlled fiber Bragg gratings for dispersion compensation,” Opt. Lett. 28(10), 786–788 (2003).
[CrossRef] [PubMed]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef]

Lu, C.

Maciejko, R.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

McKee, P. F.

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

Nakazawa, M.

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9(7), 934–936 (1997).
[CrossRef]

Pan, J. J.

Y. Liu, J. J. Pan, C. Gu, L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, C. Gu, “Strong phase-controlled fiber Bragg gratings for dispersion compensation,” Opt. Lett. 28(10), 786–788 (2003).
[CrossRef] [PubMed]

Perlin, V.

V. Perlin, H. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

Petermann, I.

Petropoulos, P.

Richardson, D. J.

Sahlgren, B.

Sahlgren, B. E.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Sandgren, S.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Shabeer, M.

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

Shahoei, H.

Storøy, H.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Stubbe, R. A. H.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Swanton, A.

R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
[CrossRef]

Tam, H. Y.

Tamura, K.

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9(7), 934–936 (1997).
[CrossRef]

Winful, H.

V. Perlin, H. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

Yao, J. P.

Zervas, M. N.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20, 2051–2053 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Electron. Lett. (3)

R. Kashyap, H.-G. Froehlich, A. Swanton, D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1808 (1996).
[CrossRef]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, S. Barcelos, “Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

R. Kashyap, P. F. McKee, D. J. Armes, M. Shabeer, D. Cotter, “Measurement of ultra-steep edge, high rejection fibre Bragg grating filters,” Electron. Lett. 31(15), 1282–1283 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Perlin, H. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9(7), 934–936 (1997).
[CrossRef]

J. Lightwave Technol. (2)

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, D. J. Richardson, “Rectangularpulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
[CrossRef]

Opt. Commun. (1)

M. Gagné, R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283(24), 5028–5032 (2010).
[CrossRef]

Opt. Eng. (1)

Y. Liu, J. J. Pan, C. Gu, L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematics of the grating writing Talbot interferometers. (a) EOPM interferometer (b) Piezo mounted phase mask interferometer.

Fig. 2
Fig. 2

Example of fiber position mapping showing deviation versus fiber position along its length for both axes.

Fig. 3
Fig. 3

Illustrations of (a) misaligned phase mask and (b) non perpendicular UV beam. As the interferometer is moved, the beam scans across the phase mask (in red).

Fig. 4
Fig. 4

Bragg wavelength shift as a function of the fiber position for different phase mask angle for the data shown in Fig. 2.

Fig. 5
Fig. 5

Bragg wavelength shift as a function of the fiber position for different incident beam angle for the data shown in Fig. 2.

Fig. 6
Fig. 6

Experimental (written with the EOPM technique) and computed transmission spectrum of a 30 cm FBG.

Fig. 7
Fig. 7

Experimental and computed group delay spectrum of a 30 cm long FBG.

Fig. 8
Fig. 8

Experimental and computed dispersion spectra of a 30 cm long FBG written by the EO modulater technique.

Fig. 9
Fig. 9

Experimental (colored) and computed (in dash) of (a) transmission spectrum and (b) reflection spectrum of a 1 meter long FBG written by the EOPM technique.

Fig. 10
Fig. 10

Experimental (colored) and computed (in dash) of (a) transmission spectrum and (b) reflection spectrum of a 100 mm long uniform FBGs written by the EOPM technique. Sampling at 3pm, masks the resolution in the measured spectra.

Fig. 11
Fig. 11

Experimental (colored) and computed (in dash) of (a) transmission spectrum and (b) reflection spectrum of a 1 meter long FBGs written by the piezo-mounted phase mask technique.

Fig. 12
Fig. 12

Backscattering amplitude of two 50 cm long sections of a single 1 m long FBG. The left side of the FBG was written with the position feedback on and the right half of the FBG with interferometer fixed without feeback.

Fig. 13
Fig. 13

Reflectivity spectra of two 50 cm long FBG written consecutively with and without the position feedback scheme.

Fig. 14
Fig. 14

Experimental and computed transmission spectrum of a 5 mm long continuously chirped FBG fabricated by sweeping the piezo frequency.

Fig. 15
Fig. 15

Experimental and computed transmission spectrum of a 1 meter long step-chirped FBG fabricated by varying the writing speed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 0 Δysinθ Δx
Δλ= λ 0 Δztanθ Δx

Metrics