Abstract

Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
    [CrossRef]
  2. T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
    [CrossRef]
  3. H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
    [CrossRef]
  4. T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
    [CrossRef]
  5. Y. Dai, W. Liao, L. Zhou, S. Chen, X. Xie, “Ion beam figuring of high-slope surfaces based on figure error compensation algorithm,” Appl. Opt. 49(34), 6630–6636 (2010).
    [CrossRef] [PubMed]
  6. R. Soufli, S. L. Baker, D. L. Windt, E. M. Gullikson, J. C. Robinson, W. A. Podgorski, L. Golub, “Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA’s Solar Dynamics Observatory,” Appl. Opt. 46(16), 3156–3163 (2007).
    [CrossRef] [PubMed]
  7. P. B. Mirkarimi, S. L. Baker, C. Montcalm, J. A. Folta, “Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes,” Appl. Opt. 40(1), 62–70 (2001).
    [CrossRef] [PubMed]
  8. H. E. Bennett, J. J. Shaffer, D. K. Burge, “Simple technique for obtaining approximate thermal expansion coefficients of low expansion materials: applications to Zerodur,” Appl. Opt. 23(16), 2734–2737 (1984).
    [CrossRef] [PubMed]
  9. R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
    [CrossRef]
  10. A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009).
    [CrossRef]
  11. A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009).
    [CrossRef] [PubMed]
  12. S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008).
    [CrossRef]
  13. V. B. Shenoy, W. L. Chan, E. Chason, “Compositionally modulated ripples induced by sputtering of alloy surfaces,” Phys. Rev. Lett. 98(25), 256101 (2007).
    [CrossRef] [PubMed]
  14. M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002).
    [CrossRef]
  15. T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994).
    [CrossRef]
  16. C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001).
    [CrossRef] [PubMed]
  17. W. Liao, Y. Dai, X. Xie, L. Zhou, “Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components,” Appl. Opt. 52(16), 3719–3725 (2013).
    [CrossRef] [PubMed]
  18. C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009).
    [CrossRef] [PubMed]
  19. F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
    [CrossRef]
  20. W. Liao, Y. Dai, X. Xie, L. Zhou, “Deterministic ion beam material adding technology for high-precision optical surfaces,” Appl. Opt. 52(6), 1302–1309 (2013).
    [CrossRef] [PubMed]
  21. W. Liao, Y. Dai, X. Xie, L. Zhou, “Combined figuring technology for high-precision optical surfaces using deterministic ion beam material adding and removal method,” Opt. Eng. 52(1), 010503 (2013).
    [CrossRef]

2013 (4)

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

W. Liao, Y. Dai, X. Xie, L. Zhou, “Combined figuring technology for high-precision optical surfaces using deterministic ion beam material adding and removal method,” Opt. Eng. 52(1), 010503 (2013).
[CrossRef]

W. Liao, Y. Dai, X. Xie, L. Zhou, “Deterministic ion beam material adding technology for high-precision optical surfaces,” Appl. Opt. 52(6), 1302–1309 (2013).
[CrossRef] [PubMed]

W. Liao, Y. Dai, X. Xie, L. Zhou, “Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components,” Appl. Opt. 52(16), 3719–3725 (2013).
[CrossRef] [PubMed]

2010 (2)

Y. Dai, W. Liao, L. Zhou, S. Chen, X. Xie, “Ion beam figuring of high-slope surfaces based on figure error compensation algorithm,” Appl. Opt. 49(34), 6630–6636 (2010).
[CrossRef] [PubMed]

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

2009 (4)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[CrossRef]

A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009).
[CrossRef]

A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009).
[CrossRef] [PubMed]

C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008).
[CrossRef]

2007 (2)

2004 (1)

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

2002 (1)

M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002).
[CrossRef]

2001 (2)

C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001).
[CrossRef] [PubMed]

P. B. Mirkarimi, S. L. Baker, C. Montcalm, J. A. Folta, “Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes,” Appl. Opt. 40(1), 62–70 (2001).
[CrossRef] [PubMed]

1995 (1)

T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[CrossRef]

1994 (1)

T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994).
[CrossRef]

1988 (1)

R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[CrossRef]

1984 (1)

Arnold, T.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

Ashworth, D.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Aziz, M. J.

C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009).
[CrossRef] [PubMed]

Baker, S. L.

Barabasi, A.

M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002).
[CrossRef]

Bennett, H. E.

Bifano, T. G.

T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[CrossRef]

Bohm, G.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

Bola George, H.

C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009).
[CrossRef] [PubMed]

Bradley, R. M.

R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[CrossRef]

Bremer, M.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Burge, D. K.

Chan, W. L.

V. B. Shenoy, W. L. Chan, E. Chason, “Compositionally modulated ripples induced by sputtering of alloy surfaces,” Phys. Rev. Lett. 98(25), 256101 (2007).
[CrossRef] [PubMed]

Chang, K. C.

C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001).
[CrossRef] [PubMed]

Chason, E.

V. B. Shenoy, W. L. Chan, E. Chason, “Compositionally modulated ripples induced by sputtering of alloy surfaces,” Phys. Rev. Lett. 98(25), 256101 (2007).
[CrossRef] [PubMed]

T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994).
[CrossRef]

Chen, S.

Chin, R.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Cuerno, R.

M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002).
[CrossRef]

Cummings, K.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Daele, B. V.

S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008).
[CrossRef]

Dai, Y.

Drueding, T. W.

T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[CrossRef]

Facsko, S.

A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009).
[CrossRef]

A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009).
[CrossRef] [PubMed]

Fawcett, S. C.

T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[CrossRef]

Fechner, R.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

Flamm, D.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

Folta, J. A.

Frost, F.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

Girard, L.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Glatzel, H.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Goldstein, M.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Golub, L.

Gullikson, E.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Gullikson, E. M.

Hansel, T.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

Harper, J. M. E.

R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[CrossRef]

Headrick, R. L.

C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001).
[CrossRef] [PubMed]

Howard, A. J.

T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994).
[CrossRef]

Hudyma, R.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Keller, A.

A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009).
[CrossRef] [PubMed]

A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009).
[CrossRef]

Kennon, J.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Kestner, B.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Liao, W.

Madi, C. S.

C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009).
[CrossRef] [PubMed]

Makeev, M. A.

M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002).
[CrossRef]

Marchetti, L.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Mayer, T. M.

T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994).
[CrossRef]

Meister, J.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

Mirkarimi, P. B.

Moller, W.

A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009).
[CrossRef]

Möller, W.

A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009).
[CrossRef] [PubMed]

Montcalm, C.

Naulleau, P.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Nickel, A.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

Podgorski, W. A.

Robinson, J. C.

Sarkar, S.

S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008).
[CrossRef]

Schindler, A.

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

Shaffer, J. J.

Shenoy, V. B.

V. B. Shenoy, W. L. Chan, E. Chason, “Compositionally modulated ripples induced by sputtering of alloy surfaces,” Phys. Rev. Lett. 98(25), 256101 (2007).
[CrossRef] [PubMed]

Soufli, R.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

R. Soufli, S. L. Baker, D. L. Windt, E. M. Gullikson, J. C. Robinson, W. A. Podgorski, L. Golub, “Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA’s Solar Dynamics Observatory,” Appl. Opt. 46(16), 3156–3163 (2007).
[CrossRef] [PubMed]

Spiller, E.

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Umbach, C. C.

C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001).
[CrossRef] [PubMed]

Vandervorst, W.

S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008).
[CrossRef]

Weiser, M.

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[CrossRef]

Windt, D. L.

Xie, X.

Zhou, L.

Ziberi, B.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

Appl. Opt. (6)

J. Appl. Phys. (1)

T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76(3), 1633–1643 (1994).
[CrossRef]

J. Phys. Condens. Matter (2)

A. Keller, S. Facsko, W. Möller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21(49), 495305 (2009).
[CrossRef] [PubMed]

C. S. Madi, H. Bola George, M. J. Aziz, “Linear stability and instability patterns in ion-sputtered silicon,” J. Phys. Condens. Matter 21(22), 224010 (2009).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. A (1)

R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[CrossRef]

New J. Phys. (1)

S. Sarkar, B. V. Daele, W. Vandervorst, “Impact of repetitive and random surface morphologies on the ripple formation on ion bombarded SiGe-surfaces,” New J. Phys. 10(8), 083012 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2–3), 147–156 (2010).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (3)

A. Keller, S. Facsko, W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267(4), 656–659 (2009).
[CrossRef]

M. A. Makeev, R. Cuerno, A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. B 197(3–4), 185–227 (2002).
[CrossRef]

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[CrossRef]

Opt. Eng. (1)

W. Liao, Y. Dai, X. Xie, L. Zhou, “Combined figuring technology for high-precision optical surfaces using deterministic ion beam material adding and removal method,” Opt. Eng. 52(1), 010503 (2013).
[CrossRef]

Phys. Rev. Lett. (2)

C. C. Umbach, R. L. Headrick, K. C. Chang, “Spontaneous Nanoscale Corrugation of Ion-Eroded SiO2: The Role of Ion-Irradiation-Enhanced Viscous Flow,” Phys. Rev. Lett. 87(24), 246104 (2001).
[CrossRef] [PubMed]

V. B. Shenoy, W. L. Chan, E. Chason, “Compositionally modulated ripples induced by sputtering of alloy surfaces,” Phys. Rev. Lett. 98(25), 256101 (2007).
[CrossRef] [PubMed]

Precis. Eng. (1)

T. W. Drueding, T. G. Bifano, S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[CrossRef]

Proc. SPIE (1)

H. Glatzel, D. Ashworth, M. Bremer, R. Chin, K. Cummings, L. Girard, M. Goldstein, E. Gullikson, R. Hudyma, J. Kennon, B. Kestner, L. Marchetti, P. Naulleau, R. Soufli, E. Spiller, “Projection Optics for Extreme Ultraviolet Lithography (EUVL) Microfield Exposure Tools (METs) with a Numerical Aperture of 0.5,” Proc. SPIE 8679, 867917 (2013).
[CrossRef]

Thin Solid Films (1)

F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459(1–2), 100–105 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

AFM images of Zerodur surface at different removal depth: (a) original morphology; (b)-(d) surface morphologies after the removal depth increasing from 30nm, 60nm to 90nm.

Fig. 2
Fig. 2

The corresponding line profiles of AFM images in Fig. 1.

Fig. 3
Fig. 3

AFM images of amorphous SiO2 and quartz surfaces before and after IBF: (a) original surface of amorphous SiO2; (b) surface morphology of amorphous SiO2 after IBF; (c) original surface of quartz; (b) surface morphology of quartz after IBF.

Fig. 4
Fig. 4

Surface roughness variation with removal depth under different processing parameters: (a) surface roughness variation under different ion beam currents and (b) surface roughness variation under different ion energies.

Fig. 5
Fig. 5

PSD functions of the three samples during IBF process

Fig. 6
Fig. 6

Schematic of ion beam sputtering of Zerodur surface

Fig. 7
Fig. 7

Experimental results of IBS of Zerodur optics assisted by IBS. Top row: morphology evolution process of sample added with Si; Bottom row: morphology evolution process of sample added with SiO2.

Tables (2)

Tables Icon

Table 1 Sputtering rates (nm/min) change with ion beam current under ion energy Eion = 800 eV

Tables Icon

Table 2 Sputtering rates (nm/min) change with ion energy under ion beam current Jion = 20 mA

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ζ t =A 2 hCζ h t =A' 2 hB' 4 h+C'ζ
A=FΩ Y q G c q c a ( 1 R Y )/Δ; C=FΩ Y q ( c a + c q R Y )/Δ; A'=FΩ[ Y q G( c q + c a R Y )Ed ]; B'=r Δ 3 /(3μ); C'=FΩ Y q ( R Y 1).
h(r,t) t =YFaΓΩ 2 h(r,t)FEdΩ 2 h(r,t) r Δ 3 3μ 2 ( 2 h(r,t))
PSDh(q,t)=PSDh(q,t=0)exp(2C(q)t)A 1exp(2C(q)t) C(q)
PSDh(q,t)= A C(q)

Metrics