Abstract

Co-doping size-tunable SnO2 nanocrystals into Er3+ ions embedded silica thin films produces an enhancement of Er-related near-infrared emission by three orders of magnitude. Selective PL and PLE measurements show that energy transfer process occurs between SnO2 nanocrystals and Er3+ ions. Quantitative studies of PL decay lifetime and photoluminescence temperature-dependence demonstrate that both high energy transfer efficiency from SnO2 nanocrystals to Er3+ ions and the partial incorporation of Er3+ ions into SnO2 nanocrystals contribute to the near-infrared emission enhancement. All these results indicated that SnO2 nanocrystals with suitable size have great potentials in fabricating high-efficiency near-infrared luminous materials as sensitizers of Er3+ ions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
    [CrossRef]
  2. Y. H. Lin, Y. C. Chi, G. R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013).
    [CrossRef]
  3. A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
    [CrossRef]
  4. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, W. Kramer, S. Richards, “Ultra-high photo luminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
    [CrossRef] [PubMed]
  5. W. J. Miniscalco, R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16(4), 258–260 (1991).
    [CrossRef] [PubMed]
  6. L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
    [CrossRef] [PubMed]
  7. M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
    [CrossRef]
  8. T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
    [CrossRef]
  9. T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
    [CrossRef]
  10. M. Nogami, T. Enomoto, T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass,” J. Lumin. 97(3–4), 147–152 (2002).
    [CrossRef]
  11. J. T. Kong, H. M. Zhu, R. F. Li, W. Q. Luo, X. Y. Chen, “Carrier-mediated 1.55 microm photoluminescence from single Er3+ center in SnO2 nanocrystals,” Opt. Lett. 34(12), 1873–1875 (2009).
    [CrossRef] [PubMed]
  12. Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
    [CrossRef]
  13. B. T. Stone, K. L. Bray, “Fluorescence properties of Er3+-doped sol-gel glasses,” J. Non-Cryst. Solids 197(2–3), 136–144 (1996).
    [CrossRef]
  14. T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
    [CrossRef] [PubMed]
  15. A. Kar, S. Kundu, A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” J. Phys. Chem. C 115(1), 118–124 (2011).
    [CrossRef]
  16. L. E. Brus, “Electron-electron and electron hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
    [CrossRef]
  17. K. Zhang, S. F. Zhou, Y. X. Zhuang, R. Yang, J. R. Qiu, “Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass,” Opt. Express 20(8), 8675–8680 (2012).
    [CrossRef] [PubMed]
  18. F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
    [CrossRef]
  19. J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
    [CrossRef]
  20. M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
    [CrossRef]
  21. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
    [CrossRef]
  22. A. Taguchi, H. Nakagome, K. Takahei, “Thermal quenching mechanism of Yb intra 4f shell luminescence in InP,” J. Appl. Phys. 70(10), 5604–5607 (1991).
    [CrossRef]
  23. S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
    [CrossRef] [PubMed]
  24. X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
    [CrossRef]
  25. N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
    [CrossRef]

2013

Y. H. Lin, Y. C. Chi, G. R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013).
[CrossRef]

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

2012

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

K. Zhang, S. F. Zhou, Y. X. Zhuang, R. Yang, J. R. Qiu, “Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass,” Opt. Express 20(8), 8675–8680 (2012).
[CrossRef] [PubMed]

K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, W. Kramer, S. Richards, “Ultra-high photo luminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[CrossRef] [PubMed]

2011

A. Kar, S. Kundu, A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” J. Phys. Chem. C 115(1), 118–124 (2011).
[CrossRef]

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

2010

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

2009

2008

J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
[CrossRef]

2005

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

2004

M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[CrossRef]

2002

M. Nogami, T. Enomoto, T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass,” J. Lumin. 97(3–4), 147–152 (2002).
[CrossRef]

N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
[CrossRef]

1999

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

1996

B. T. Stone, K. L. Bray, “Fluorescence properties of Er3+-doped sol-gel glasses,” J. Non-Cryst. Solids 197(2–3), 136–144 (1996).
[CrossRef]

1994

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

1991

W. J. Miniscalco, R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16(4), 258–260 (1991).
[CrossRef] [PubMed]

A. Taguchi, H. Nakagome, K. Takahei, “Thermal quenching mechanism of Yb intra 4f shell luminescence in InP,” J. Appl. Phys. 70(10), 5604–5607 (1991).
[CrossRef]

1987

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[CrossRef]

1984

L. E. Brus, “Electron-electron and electron hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[CrossRef]

Anopchenko, A.

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

Beaumont, B.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Brambilla, G.

N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
[CrossRef]

Bray, K. L.

B. T. Stone, K. L. Bray, “Fluorescence properties of Er3+-doped sol-gel glasses,” J. Non-Cryst. Solids 197(2–3), 136–144 (1996).
[CrossRef]

Brus, L. E.

L. E. Brus, “Electron-electron and electron hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[CrossRef]

Chen, D. Q.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Chen, K. J.

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

Chen, R.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Chen, X. Y.

Chi, Y. C.

Y. H. Lin, Y. C. Chi, G. R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013).
[CrossRef]

Chiodini, N.

N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
[CrossRef]

Coffa, S.

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

del-Castillo, J.

J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
[CrossRef]

Ding, X. Y.

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

Dong, Z. L.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Enomoto, T.

M. Nogami, T. Enomoto, T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass,” J. Lumin. 97(3–4), 147–152 (2002).
[CrossRef]

Fedeli, J. M.

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

Franzò, G.

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

Fujii, M.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[CrossRef]

Fukushima, M.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Gibart, P.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Grandjean, N.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Hayakawa, T.

M. Nogami, T. Enomoto, T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass,” J. Lumin. 97(3–4), 147–152 (2002).
[CrossRef]

Hayashi, S.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[CrossRef]

Huang, P.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Imakita, K.

M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[CrossRef]

Ivaturi, A.

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[CrossRef]

Jin, L.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Kar, A.

A. Kar, S. Kundu, A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” J. Phys. Chem. C 115(1), 118–124 (2011).
[CrossRef]

Kong, J. T.

Kramer, W.

Kundu, S.

A. Kar, S. Kundu, A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” J. Phys. Chem. C 115(1), 118–124 (2011).
[CrossRef]

Leroux, M.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Li, D. S.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Li, R. F.

Lin, G. R.

Y. H. Lin, Y. C. Chi, G. R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013).
[CrossRef]

Lin, H.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Lin, T.

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

Lin, Y. H.

Y. H. Lin, Y. C. Chi, G. R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013).
[CrossRef]

Liu, J. F.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

Luo, W. Q.

MacDougall, K. W.

Managaki, N.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Marques-Hueso, J.

Massies, J.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[CrossRef]

Méndez-Ramos, J.

J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
[CrossRef]

Miniscalco, W. J.

Nakagome, H.

A. Taguchi, H. Nakagome, K. Takahei, “Thermal quenching mechanism of Yb intra 4f shell luminescence in InP,” J. Appl. Phys. 70(10), 5604–5607 (1991).
[CrossRef]

Nataf, G.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Nogami, M.

M. Nogami, T. Enomoto, T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass,” J. Lumin. 97(3–4), 147–152 (2002).
[CrossRef]

Paleari, A.

N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
[CrossRef]

Patra, A.

A. Kar, S. Kundu, A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” J. Phys. Chem. C 115(1), 118–124 (2011).
[CrossRef]

Pavesi, L.

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

Payne, D. N.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[CrossRef]

Polman, A.

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

Priolo, F.

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

Prtljaga, N.

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

Qiu, J. R.

Que, D. L.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Quimby, R. S.

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[CrossRef]

Richards, S.

Rodriguez, V. D.

J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
[CrossRef]

Semond, F.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Serna, R.

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

Shen, Y. Q.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Stone, B. T.

B. T. Stone, K. L. Bray, “Fluorescence properties of Er3+-doped sol-gel glasses,” J. Non-Cryst. Solids 197(2–3), 136–144 (1996).
[CrossRef]

Sun, H. D.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Taguchi, A.

A. Taguchi, H. Nakagome, K. Takahei, “Thermal quenching mechanism of Yb intra 4f shell luminescence in InP,” J. Appl. Phys. 70(10), 5604–5607 (1991).
[CrossRef]

Takahei, K.

A. Taguchi, H. Nakagome, K. Takahei, “Thermal quenching mechanism of Yb intra 4f shell luminescence in InP,” J. Appl. Phys. 70(10), 5604–5607 (1991).
[CrossRef]

Taylor, E. R.

N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
[CrossRef]

Tengattini, A.

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

Wan, N.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

Wang, F.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Wang, H. H.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Wang, Y. J.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

Wang, Y. S.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Watanabe, K.

M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[CrossRef]

Xiang, L. L.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Xiao, F.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Xu, J.

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

Xu, L.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

Yanagi, H.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Yanes, A. C.

J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
[CrossRef]

Yang, A. P.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Yang, D. R.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Yang, R.

Yu, Y. L.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Zhang, K.

Zhang, Q. Y.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Zhang, X. W.

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

Zhou, S. F.

Zhu, H. M.

Zhuang, Y. X.

Appl. Phys. Lett.

A. Anopchenko, N. Prtljaga, A. Tengattini, J. M. Fedeli, L. Pavesi, “Infrared photoconductivity of Er-doped Si nanoclusters embedded in a slot waveguide,” Appl. Phys. Lett. 103(6), 061105 (2013).
[CrossRef]

N. Chiodini, A. Paleari, G. Brambilla, E. R. Taylor, “Erbium doped nanostructured tin-silicate glass-ceramic composites,” Appl. Phys. Lett. 80(23), 4449–4451 (2002).
[CrossRef]

Chin. Phys. B

X. W. Zhang, T. Lin, J. Xu, L. Xu, K. J. Chen, “The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol-gel SiO2 films,” Chin. Phys. B 21(1), 018101 (2012).
[CrossRef]

Electron. Lett.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[CrossRef]

J. Appl. Phys.

M. Fujii, K. Imakita, K. Watanabe, S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[CrossRef]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[CrossRef]

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

A. Taguchi, H. Nakagome, K. Takahei, “Thermal quenching mechanism of Yb intra 4f shell luminescence in InP,” J. Appl. Phys. 70(10), 5604–5607 (1991).
[CrossRef]

J. Chem. Phys.

L. E. Brus, “Electron-electron and electron hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[CrossRef]

J. Lumin.

M. Nogami, T. Enomoto, T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass,” J. Lumin. 97(3–4), 147–152 (2002).
[CrossRef]

J. Nanopart. Res.

J. del-Castillo, V. D. Rodriguez, A. C. Yanes, J. Méndez-Ramos, “Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses,” J. Nanopart. Res. 10(3), 499–506 (2008).
[CrossRef]

J. Nanosci. Nanotechnol.

T. Lin, N. Wan, J. Xu, L. Xu, K. J. Chen, “Size-dependent optical properties of SnO2 nanoparticles prepared by soft chemical technique,” J. Nanosci. Nanotechnol. 10(7), 4357–4362 (2010).
[CrossRef] [PubMed]

J. Non-Cryst. Solids

B. T. Stone, K. L. Bray, “Fluorescence properties of Er3+-doped sol-gel glasses,” J. Non-Cryst. Solids 197(2–3), 136–144 (1996).
[CrossRef]

J. Phys. Chem. C

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

A. Kar, S. Kundu, A. Patra, “Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles,” J. Phys. Chem. C 115(1), 118–124 (2011).
[CrossRef]

J. Solid State Chem.

Y. L. Yu, D. Q. Chen, P. Huang, H. Lin, A. P. Yang, Y. S. Wang, “Distribution-related luminescence of Eu3+ sensitized by SnO2 nano-crystals embedding in oxide glassy matrix,” J. Solid State Chem. 184(2), 236–240 (2011).
[CrossRef]

Laser Phys. Lett.

Y. H. Lin, Y. C. Chi, G. R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013).
[CrossRef]

Nanoscale Res. Lett.

L. Jin, D. S. Li, L. L. Xiang, F. Wang, D. R. Yang, D. L. Que, “Energy transfer from luminescent centers to Er3+ in erbium-doped silicon-rich oxide films,” Nanoscale Res. Lett. 8(1), 366 (2013).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B Condens. Matter

S. Coffa, G. Franzò, F. Priolo, A. Polman, R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[CrossRef] [PubMed]

Thin Solid Films

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). Cross-sectional TEM image of 20% Sn doped SiO2 film annealed at 1000 °C. The related concentration of Sn is measured from the molar ratio of Sn molecules to Si molecules in the sol precursor, the same as follows. (b)-(e). The high-resolution TEM images of the SiO2 films doped with different Sn concentrations (5%, 10%, 20%, 50%), and the average sizes are 2.9 nm, 3.8 nm, 5.2 nm, 11.2 nm, respectively.

Fig. 2
Fig. 2

(a). PL spectra of thin films co-doped with 20% Sn and different Er concentrations excited at 325 nm. (b). PL spectra of thin films with 5% Er and different Sn concentration (0-20%) excited by Xe lamp under 382 nm, 307 nm, 318 nm, 326 nm wavelength, respectively. (c). Sn amount dependence of characteristic emission intensity of Er3+ ions at 1540 nm. (d). PLE spectra of samples with 5% Er and different Sn concentration detected at 1540 nm.

Fig. 3
Fig. 3

PL intensity decay traces from time-resolved PL measurements of the SnO2 emission at 576 nm for the SiO2 films with different concentrations of Er3+ (0 and 5%) under 405 nm picosecond pulsed laser excitation.

Fig. 4
Fig. 4

Temperature-dependence of PL intensity at 1540nm is plotted versus the reciprocal temperature. The insert illustrates the (I0/I(t)-1) -T−1 plots to guide the Arrhenius fitting.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ= I( t ) I max dt,
η ET =1 τ Er5% τ Er-free ,
I(T)= I 0 1+aexp( E a KT ) ,
I(T)= I 0 1+ a 1 exp( E a 1 KT )+ a 2 exp( E a 2 KT ) ,

Metrics