L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013).

[Crossref]
[PubMed]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009)

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).

[Crossref]
[PubMed]

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous raman scattering,” Jpn. J. Appl. Phys. 43, 8048 (2004).

[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002).

[Crossref]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)

L. Wang, C. Hong, and S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).

[Crossref]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).

[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).

[Crossref]
[PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

[Crossref]

J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).

[Crossref]
[PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[Crossref]

J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).

[Crossref]
[PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).

[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).

[Crossref]
[PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

[Crossref]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).

[Crossref]

J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).

[Crossref]
[PubMed]

L. Wang, C. Hong, and S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).

[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002).

[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).

[Crossref]
[PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[Crossref]

L. Wang, C. Hong, and S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).

[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[Crossref]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002).

[Crossref]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002).

[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).

[Crossref]

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous raman scattering,” Jpn. J. Appl. Phys. 43, 8048 (2004).

[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).

[Crossref]
[PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).

[Crossref]
[PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

[Crossref]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)

L. Wang, C. Hong, and S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).

[Crossref]
[PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

[Crossref]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3, 072135 (2013).

[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Applied optics 52, 3241–3245 (2013).

[Crossref]
[PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 27, 491C493 (2002)

L. Wang, C. Hong, and S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).

[Crossref]

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous raman scattering,” Jpn. J. Appl. Phys. 43, 8048 (2004).

[Crossref]

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature (London) 421, 509–513 (2003).

[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).

[Crossref]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).

[Crossref]
[PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers,” Opt. Express 18, 17114–17123 (2010).

[Crossref]
[PubMed]

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013).

[Crossref]
[PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, ”Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007)

[Crossref]
[PubMed]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009)

[Crossref]
[PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).

[Crossref]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μm,” Opt. Lett. 34, 2706–2708 (2009).

[Crossref]
[PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002).

[Crossref]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

[Crossref]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).

[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional hilbert spaces,” Phys. Rev. A 69, 050304 (2004).

[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).

[Crossref]
[PubMed]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).

[Crossref]
[PubMed]

J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).

[Crossref]
[PubMed]

J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).

J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).

[Crossref]