Abstract

A novel and compact photonic microwave downconverter is proposed and experimentally demonstrated based on an optoelectronic oscillator (OEO) using a single dual-drive Mach-Zehnder modulator (DMZM). The DMZM is used to simultaneously convert the input RF signal into an optical signal, form an OEO for RF carrier extraction, and downconvert the optical RF signal to the baseband. In the experiment, a 2-Gb/s NRZ coded 10.66-GHz RF signal is successfully downconverted to the baseband. In addition, a microwave receiver for wireless high-definition (HD) video transmission is built and verified based on the proposed downconverter. The experiment results confirm that the proposed downconverter has simple configuration, good downconversion performance and very stable operation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
    [CrossRef]
  2. G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
    [CrossRef]
  3. V. R. Pagán and T. E. Murphy, “Phase-modulated radio-over-fiber systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1D.5.
    [CrossRef]
  4. C. Bohemond, T. Rampone, A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightwave Technol. 29(16), 2402–2409 (2011).
    [CrossRef]
  5. H. J. Song, M. Park, H. J. Kim, J. S. Lee, and J. I. Song, “All-optical frequency down-conversion for full-duplex WDM RoF systems utilizing an SOA-MZI,” in IEEE Internal Topical Meeting on Microwave Photonics (MWP, 2005), pp. 321–324.
  6. H. J. Kim, J. I. Song, “All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications,” Opt. Express 20(7), 8047–8054 (2012).
    [CrossRef] [PubMed]
  7. S. L. Pan, J. P. Yao, “Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 27(16), 3531–3539 (2009).
    [CrossRef]
  8. W.-H. Tseng, K.-M. Feng, “Impact of fiber delay fluctuation on reference injection-locked optoelectronic oscillators,” Opt. Lett. 37(17), 3525–3527 (2012).
    [CrossRef] [PubMed]

2013 (1)

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

2012 (2)

2011 (1)

2009 (1)

1995 (1)

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Bohemond, C.

Burns, W.

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Esman, R.

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Feng, K.-M.

Gopalakrishnan, G.

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Howerton, M.

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Kim, H. J.

Liu, X.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

Lu, B.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

Luo, B.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

Moeller, R.

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Pan, S. L.

Pan, W.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

Rampone, T.

Sharaiha, A.

Song, J. I.

Tseng, W.-H.

Williams, K.

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

Yan, L.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

Yao, J. P.

Zhang, T.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

Zou, X.

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

IEEE Photonics J. (1)

T. Zhang, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, B. Lu, “High-spectral-efficiency photonic frequency down-conversion using optical frequency comb and SSB modulation,” IEEE Photonics J. 5(2), 7200307 (2013).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. Gopalakrishnan, R. Moeller, M. Howerton, W. Burns, K. Williams, R. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43(9), 2318–2323 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (1)

Other (2)

V. R. Pagán and T. E. Murphy, “Phase-modulated radio-over-fiber systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1D.5.
[CrossRef]

H. J. Song, M. Park, H. J. Kim, J. S. Lee, and J. I. Song, “All-optical frequency down-conversion for full-duplex WDM RoF systems utilizing an SOA-MZI,” in IEEE Internal Topical Meeting on Microwave Photonics (MWP, 2005), pp. 321–324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed photonic microwave downconverter. LD: laser diode; PC: polarization controller; DMZM: dual drive Mach-Zehnder modulator; PD: photo-detector; LNA: low noise amplifier; EBPF: electrical band-pass filter; LPF: low pass filter; ESA: electrical spectrum analyzer.

Fig. 2
Fig. 2

The spectra of the (a) free-running signal (dashed line) and the extracted RF carrier signal when the OEO is injection locked (solid line). Center frequency: 10.66 GHz; span: 200 kHz. (b) Phase noise spectra of the injection locked signal (solid line) and the free-running signal (dashed line).

Fig. 3
Fig. 3

(a) The spectrum of the downconverted signal, (b) the BER performance of the downconverted PRBS signal. Inset in (a): the eye diagram of the downconverted signal.

Fig. 4
Fig. 4

The electrical spectra of the (a) original and (b) downconverted wireless HD video signal.

Fig. 5
Fig. 5

The photograph of the experimental system.

Fig. 6
Fig. 6

(a) The conversion efficiency as a function of the DC bias, and (b) the typical electrical spectrum of the downconverted signal when the DC bias is 5 V(dashed line), 3.5 V (dotted line) or 7.5 V (solid line). The center frequency is 2.0 GHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 1 =exp( j ω c t )[ exp( j β 1 cos ω RF t )exp( j ϕ 0 )+exp( j β 2 cos ω LO t ) ]
E 1 =exp( j( ω c t+ ϕ 0 ) )[ j J 1 ( β 1 )exp( j ω RF t )+ J 0 ( β 1 )+j J 1 ( β 1 )exp( j ω RF t ) ] +exp( j ω c t )[ j J 1 ( β 2 )exp( j ω LO t )+ J 0 ( β 2 )+j J 1 ( β 2 )exp( j ω LO t ) ]
i AC J 1 ( β 1 ) J 0 ( β 2 )sin ϕ 0 cos( ω RF t )+ J 1 ( β 2 ) J 0 ( β 1 )sin ϕ 0 cos( ω LO t ) + J 1 ( β 1 ) J 1 ( β 2 )cos ϕ 0 cos( ( ω RF ω LO )t )+ J 1 ( β 1 ) J 1 ( β 2 )cos ϕ 0 cos( ( ω RF + ω LO )t )+...

Metrics