Abstract

We demonstrated a Q-switched Ho:YAG ceramic laser operating at 2097 nm. The Ho:YAG ceramic laser was resonantly pumped by a Tm:YLF laser at 1908 nm. The laser performance with two Ho-doping concentrations of Ho:YAG ceramics in a U-shaped resonator was studied. Different pump spots were investigated to obtain high extract efficiency. The wavelength of Ho:YAG ceramic laser was tuned from 2090.70 nm to 2098.10 nm. The Q-switched pulse energy were 9.6 mJ at a pulse repetition frequency (PRF) of 200 Hz and 10.2 mJ at a PRF of 100 Hz, respectively. The beam quality M2 factors were measured to be less than 1.1 in both directions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
    [CrossRef]
  2. Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
    [CrossRef]
  3. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
    [CrossRef] [PubMed]
  4. S. Haidar, K. Miyamoto, H. Ito, “Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1–3), 173–178 (2004).
    [CrossRef]
  5. E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
    [CrossRef] [PubMed]
  6. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
    [CrossRef]
  7. X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
    [CrossRef]
  8. P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, E. P. Chicklis, “50-mJ, Q-switched, 2.09-microm holmium laser resonantly pumped by a diode-pumped 1.9-microm thulium laser,” Opt. Lett. 28(12), 1016–1018 (2003).
    [CrossRef] [PubMed]
  9. W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
    [CrossRef]
  10. X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
    [CrossRef]
  11. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
    [CrossRef] [PubMed]
  12. H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
    [CrossRef]
  13. L. Wang, C. Gao, M. Gao, Y. Li, “Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm,” Opt. Express 21(8), 9541–9546 (2013).
    [CrossRef] [PubMed]
  14. N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
    [CrossRef]
  15. L. Zhu, M. Wang, J. Zhou, W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
    [CrossRef] [PubMed]
  16. N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 35(1), 101–109 (1999).
    [CrossRef]

2013 (1)

2012 (2)

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

2011 (4)

2010 (3)

E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
[CrossRef] [PubMed]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

2008 (1)

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

2007 (1)

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
[CrossRef]

2005 (1)

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

2004 (1)

S. Haidar, K. Miyamoto, H. Ito, “Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1–3), 173–178 (2004).
[CrossRef]

2003 (1)

1999 (1)

N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Antipova, O. L.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Arisholm, G.

Barnes, N. P.

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
[CrossRef]

N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Browell, E. V.

Budni, P. A.

Castro, R. T.

Chen, H.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[CrossRef] [PubMed]

Chen, W.

Cheng, X. J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

Chicklis, E. P.

Choi, Y.

Christensen, L. E.

Duan, X. M.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

Fedorov, M.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Fonnum, H.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

Gao, C.

Gao, J.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

Gao, M.

Gustafson, E. J.

Haidar, S.

S. Haidar, K. Miyamoto, H. Ito, “Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1–3), 173–178 (2004).
[CrossRef]

Ibach, C. R.

Ito, H.

S. Haidar, K. Miyamoto, H. Ito, “Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1–3), 173–178 (2004).
[CrossRef]

Jacob, J.

Jiang, B. X.

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

Li, J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

Li, S.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Li, X.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Li, Y.

Lippert, E.

Liu, W. B.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

Luo, D.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

Luo, Q.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Ma, J.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

Menzies, R. T.

Miyamoto, K.

S. Haidar, K. Miyamoto, H. Ito, “Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1–3), 173–178 (2004).
[CrossRef]

Pan, Y.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Pan, Y. B.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

Phillips, M. W.

Prodanets, N. N.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Qin, X.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

Setzler, S. D.

Shakhova, N. M.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Sharkov, V. V.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Shen, D.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[CrossRef] [PubMed]

Snopova, L. B.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Song, C. W.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

Spiers, G. D.

Sroka, R.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Stenersen, K.

Tang, D.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[CrossRef] [PubMed]

Walsh, B. M.

N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Wang, L.

L. Wang, C. Gao, M. Gao, Y. Li, “Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm,” Opt. Express 21(8), 9541–9546 (2013).
[CrossRef] [PubMed]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

Wang, M.

Wang, M. J.

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

Wang, Y.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Wang, Y. Z.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

Xiong, X.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Xu, J. Q.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

Yang, H.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[CrossRef] [PubMed]

Yang, X.

Yao, B. Q.

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

Zakharova, N. G.

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Zhang, J.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[CrossRef] [PubMed]

Zhang, Q.

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

Zhang, W.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Zhang, W. X.

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

Zhao, T.

Zhou, J.

L. Zhu, M. Wang, J. Zhou, W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
[CrossRef] [PubMed]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

Zhu, J.

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Zhu, L.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron. 13(3), 435–447 (2007).
[CrossRef]

N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

J. Alloy. Comp. (1)

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. Yang, J. Zhang, X. Qin, D. Luo, J. Ma, D. Tang, H. Chen, D. Shen, Q. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[CrossRef]

Laser Phys. Lett. (2)

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[CrossRef]

X. M. Duan, B. Q. Yao, C. W. Song, J. Gao, Y. Z. Wang, “Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser,” Laser Phys. Lett. 5(11), 800–803 (2008).
[CrossRef]

Med. Laser Appl. (1)

O. L. Antipova, N. G. Zakharova, M. Fedorov, N. M. Shakhova, N. N. Prodanets, L. B. Snopova, V. V. Sharkov, R. Sroka, “Cutting effects induced by 2 μm laser radiation of CW Tm:YLF and CW and Q-switcheded Ho:YAG lasers on ex-vivo tissue,” Med. Laser Appl. 26(2), 67–75 (2011).
[CrossRef]

Opt. Commun. (1)

S. Haidar, K. Miyamoto, H. Ito, “Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun. 241(1–3), 173–178 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

Y. Pan, Y. Wang, X. Li, X. Xiong, Y. Wang, S. Li, Q. Luo, J. Zhu, W. Zhang, “Ho:YAG laser application in cerebellopontine angle tumor operation,” Proc. SPIE 5967, 59671R (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup of the Ho:YAG ceramic laser pumped by a Tm:YLF laser.

Fig. 2
Fig. 2

CW output power and average output power of 1.0 at.% Ho:YAG ceramic laser with different pump spot diameters. For the Q-switched operation, the pulse repetition frequency was 200 Hz.

Fig. 3
Fig. 3

CW output power of Ho:YAG ceramic laser verse incident pump power with the pump diameter of 588 μm.

Fig. 4
Fig. 4

Wavelength tuning of the Ho:YAG ceramic laser with two Ho-doping concentrations.

Fig. 5
Fig. 5

Output energy of the Ho:YAG ceramic laser with pump diameter of 588 μm verse incident pump power.

Fig. 6
Fig. 6

Output energy and pulse width of the Ho:YAG ceramic lasers at 200 Hz PRF with pump diameter of 588 μm verse incident pump power.

Fig. 7
Fig. 7

Average output power of 0.8 at.% and 1.0 at.% Ho:YAG ceramic lasers as functions of PRF (100 Hz to 5 kHz) at different incident pump power. The solid symbols are for 1.0 at.% Ho:YAG ceramic, and the hollow core symbols are for 0.8 at. % Ho:YAG ceramic.

Fig. 8
Fig. 8

The extract efficiency of 0.8 at.% Ho:YAG ceramic lasers as functions of PRF.

Fig. 9
Fig. 9

The extract efficiency of 1.0 at.% Ho:YAG ceramic lasers as functions of PRF.

Fig. 10
Fig. 10

Effective upper laser level lifetime of 0.8 at.% and 1.0 at.% Ho:YAG ceramics as functions of incident pump power.

Fig. 11
Fig. 11

Beam propagation and intensity profile of Q-switched Ho:YAG ceramic laser. The inserted picture is the two-dimensional beam profiles of the laser beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η s = P av (PRF)/ P CW =τ/ τ Q [1exp( τ Q /τ)].

Metrics