Abstract

A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is −93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB·Hz2/3.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI

Doo-Ho Kim, Joo-Young Lee, Hyung-June Choi, and Jong-In Song
Opt. Express 24(18) 20309-20317 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [Crossref]
  2. M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” In proc. MWP 2005, 121–124 (2005).
  3. T. Kuri, K. Kitayama, A. St¨ohr, and Y. Ogawa, “Fiber-Optic Millimeter-Wave Downlink System Using 60 GHz-Band External Modulation,” J. Lightwave Technol. 17(5), 799–806 (1999).
    [Crossref]
  4. H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
    [Crossref] [PubMed]
  5. J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
    [Crossref]
  6. H.-J. Kim and J.-I. Song, “Phase noise characteristics of all-optical single sideband frequency upconverter for radio-over-fibre applications,” Electron. Lett. 46(10), 700–701 (2010).
    [Crossref]
  7. S.-H. Lee, H.-J. Kim, and J.-I. Song, “All-optical frequency up-converter utilizing cross polarization modulation in an SOA for 60-GHz-band radio-over-fiber systems,” IEEE Photon. Technol. Lett. 25(18), 1812–1814 (2013).
    [Crossref]
  8. R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
    [Crossref]
  9. X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
    [Crossref]
  10. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
    [Crossref]
  11. M. Tariaki, A. Sharaiha, M. Guégan, F. L. Bentivegna, and M. Amaya, “All-optical inverted and non-inverted wavelength conversion based on cross polarization modulation in a semiconductor optical amplifier,” IEEE 3th International Conference on Information and Communication Technologies: from Theory to Applications (IEEE-ICTTA’08), (2008)
    [Crossref]
  12. J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
    [Crossref]
  13. C. C. Wei and J. J. Chen, “Study of differential cross-polarization modulation in a semiconductor optical amplifier,” Opt. Express 13(21), 8442–8451 (2005).
    [Crossref] [PubMed]
  14. J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
    [Crossref]
  15. H.-J. Song, J. S. Lee, and J.-I. Song, “Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
    [Crossref]

2013 (1)

S.-H. Lee, H.-J. Kim, and J.-I. Song, “All-optical frequency up-converter utilizing cross polarization modulation in an SOA for 60-GHz-band radio-over-fiber systems,” IEEE Photon. Technol. Lett. 25(18), 1812–1814 (2013).
[Crossref]

2010 (1)

H.-J. Kim and J.-I. Song, “Phase noise characteristics of all-optical single sideband frequency upconverter for radio-over-fibre applications,” Electron. Lett. 46(10), 700–701 (2010).
[Crossref]

2009 (1)

2008 (1)

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

2005 (1)

2004 (1)

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

2003 (3)

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[Crossref]

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
[Crossref]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

2001 (1)

R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[Crossref]

1999 (1)

1997 (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Antonopoulos, A.

R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[Crossref]

Calabretta, N.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

Chang, G.-K.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Chen, J. J.

Choi, W.-Y.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[Crossref]

de Waardt, H.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

Dorren, H. J. S.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
[Crossref]

Fuster, J. M.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Hill, M. T.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

Huang, M.-F.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Jia, Z.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Kelly, A. E.

R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[Crossref]

Khoe, G. D.

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
[Crossref]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

Kim, H.-J.

S.-H. Lee, H.-J. Kim, and J.-I. Song, “All-optical frequency up-converter utilizing cross polarization modulation in an SOA for 60-GHz-band radio-over-fiber systems,” IEEE Photon. Technol. Lett. 25(18), 1812–1814 (2013).
[Crossref]

H.-J. Kim and J.-I. Song, “Phase noise characteristics of all-optical single sideband frequency upconverter for radio-over-fibre applications,” Electron. Lett. 46(10), 700–701 (2010).
[Crossref]

H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
[Crossref] [PubMed]

Kitayama, K.

Kuri, T.

Laming, R. I.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Le Roux, R.

R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[Crossref]

Lee, J. S.

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

Lee, S.-H.

S.-H. Lee, H.-J. Kim, and J.-I. Song, “All-optical frequency up-converter utilizing cross polarization modulation in an SOA for 60-GHz-band radio-over-fiber systems,” IEEE Photon. Technol. Lett. 25(18), 1812–1814 (2013).
[Crossref]

Lenstra, D.

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
[Crossref]

Liu, Y.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

Manning, R. J.

R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[Crossref]

Marti, J.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Ogawa, Y.

Seo, J.-H.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[Crossref]

Seo, Y.-K.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[Crossref]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Song, H.-J.

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

Song, J.-I.

S.-H. Lee, H.-J. Kim, and J.-I. Song, “All-optical frequency up-converter utilizing cross polarization modulation in an SOA for 60-GHz-band radio-over-fiber systems,” IEEE Photon. Technol. Lett. 25(18), 1812–1814 (2013).
[Crossref]

H.-J. Kim and J.-I. Song, “Phase noise characteristics of all-optical single sideband frequency upconverter for radio-over-fibre applications,” Electron. Lett. 46(10), 700–701 (2010).
[Crossref]

H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
[Crossref] [PubMed]

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

St¨ohr, A.

Tangdiongga, E.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

Wang, T.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Wei, C. C.

Yang, X.

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
[Crossref]

Yu, J.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Electron. Lett. (3)

H.-J. Kim and J.-I. Song, “Phase noise characteristics of all-optical single sideband frequency upconverter for radio-over-fibre applications,” Electron. Lett. 46(10), 700–701 (2010).
[Crossref]

R. J. Manning, A. Antonopoulos, R. Le Roux, and A. E. Kelly, “Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[Crossref]

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (5)

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(1), 90–92 (2003).
[Crossref]

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[Crossref]

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

S.-H. Lee, H.-J. Kim, and J.-I. Song, “All-optical frequency up-converter utilizing cross polarization modulation in an SOA for 60-GHz-band radio-over-fiber systems,” IEEE Photon. Technol. Lett. 25(18), 1812–1814 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223(1), 169–179 (2003).
[Crossref]

Opt. Express (2)

Other (2)

M. Tariaki, A. Sharaiha, M. Guégan, F. L. Bentivegna, and M. Amaya, “All-optical inverted and non-inverted wavelength conversion based on cross polarization modulation in a semiconductor optical amplifier,” IEEE 3th International Conference on Information and Communication Technologies: from Theory to Applications (IEEE-ICTTA’08), (2008)
[Crossref]

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” In proc. MWP 2005, 121–124 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of a photonic SSB frequency up-conversion technique employing XPolM effect in an SOA. (a) RoF down-link configured using the photonic SSB frequency up-converter based on XPolM effect. (b) Optical signal spectra at various points of the OSSB frequency up-converter. (c) Schematic transfer function of the photonic SSB frequency up-converter showing the principle of generating an OSSB signal.
Fig. 2
Fig. 2 Experimental setup for photonic SSB frequency up-conversion using the XPolM effect in an SOA.
Fig. 3
Fig. 3 Measured optical powers of the left tone and the right tone of the optical RF signal as a function of the power of the optical IF tone.
Fig. 4
Fig. 4 Measured optical spectra of the signal at (a) the output of the LO signal generator, (b) the output of the IF signal generator (VOA2), (c) the output of the SOA, (d) the output of PC3, (e) the output of PC4, (f) the output of the OBPF.
Fig. 5
Fig. 5 Spectrum of the electrical RF signal measured at the output of the PD.
Fig. 6
Fig. 6 (a) Normalized value of the electrical RF signal power (USB) as a function of the RF signal frequency (OSSB signals transmitted over 0 km and 40 km SMF: measured, ODSB signal transmitted over 40 km SMF: simulated), (b) Normalized value of the electrical RF signal power (USB) as a function of the IF signal frequency
Fig. 7
Fig. 7 Measured phase noises of the LO, IF, and up-converted RF signal (USB).
Fig. 8
Fig. 8 (a) Measured electrical spectra of the SSB RF signal for two tone test; (b) Electrical RF powers of the fundamental and the third-order inter-modulation distortion component of the SSB RF signal as a function of the electrical IF power

Metrics