Abstract

We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both modes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.
  2. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.
  3. D. J. Richardson, J. M. Fini, L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [CrossRef]
  4. L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [CrossRef] [PubMed]
  5. E. Narevicius, R. Narevich, Y. Berlatzky, I. Shtrichman, G. Rosenblum, I. Vorobeichik, “Adiabatic mode multiplexer for evanescent-coupling-insensitive optical switching,” Opt. Lett. 30(24), 3362–3364 (2005).
    [CrossRef] [PubMed]
  6. D. Dai, J. Wang, Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [CrossRef] [PubMed]
  7. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [CrossRef] [PubMed]
  8. M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
    [CrossRef] [PubMed]
  9. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, CA, 2009), paper ThP19.
    [CrossRef]
  10. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [CrossRef]
  11. J. M. Yates, M. P. Rumsewicz, J. P. Lacey, “Wavelength converters in dynamically-reconfigurable WDM networks,” IEEE Commun. Surv. 2(2), 2–15 (1999).
    [CrossRef]
  12. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, “Intermodal Čerenkov radiation in a higher-order-mode fiber,” Opt. Lett. 37(21), 4410–4412 (2012).
    [CrossRef] [PubMed]
  13. G. Rademacher, S. Warm, K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers,” IEEE Photonics Technol. Lett. 24(21), 1929–1932 (2012).
    [CrossRef]
  14. R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
    [CrossRef]
  15. Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” in 39th European Conference on Optical Communication 2013 (London, 2013), paper Tu.1.C.3.
  16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  17. A. B. Fallahkhair, K. S. Li, T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [CrossRef]
  18. F. Poletti, P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645–1654 (2008).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  20. Y. Ding, L. Liu, C. Peucheret, H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [CrossRef] [PubMed]
  21. Y. Ding, H. Ou, C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [CrossRef] [PubMed]

2013 (5)

2012 (5)

2008 (2)

2006 (1)

2005 (2)

1999 (1)

J. M. Yates, M. P. Rumsewicz, J. P. Lacey, “Wavelength converters in dynamically-reconfigurable WDM networks,” IEEE Commun. Surv. 2(2), 2–15 (1999).
[CrossRef]

Berlatzky, Y.

Charan, K.

Cheng, J.

Chraplyvy, A. R.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Da Ros, F.

Dai, D.

Ding, Y.

Essiambre, R.-J.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Fallahkhair, A. B.

Fini, J. M.

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[CrossRef]

Foster, M. A.

Gabrielli, L. H.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Gaeta, A. L.

Gnauck, A. H.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Greenberg, M.

Grüner-Nielsen, L.

Horak, P.

Huang, B.

Ishizaka, Y.

Jakobsen, D.

Jiang, X.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Kawaguchi, Y.

Koshiba, M.

Lacey, J. P.

J. M. Yates, M. P. Rumsewicz, J. P. Lacey, “Wavelength converters in dynamically-reconfigurable WDM networks,” IEEE Commun. Surv. 2(2), 2–15 (1999).
[CrossRef]

Li, K. S.

Lingle, R.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Lipson, M.

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Liu, L.

Manolatou, C.

Mestre, M. A.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Murphy, T. E.

Narevich, R.

Narevicius, E.

Nelson, L. E.

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[CrossRef]

Orenstein, M.

Ou, H.

Pedersen, M. E. V.

Petermann, K.

G. Rademacher, S. Warm, K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers,” IEEE Photonics Technol. Lett. 24(21), 1929–1932 (2012).
[CrossRef]

Peucheret, C.

Poletti, F.

Rademacher, G.

G. Rademacher, S. Warm, K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers,” IEEE Photonics Technol. Lett. 24(21), 1929–1932 (2012).
[CrossRef]

Richardson, D. J.

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[CrossRef]

Rosenblum, G.

Rumsewicz, M. P.

J. M. Yates, M. P. Rumsewicz, J. P. Lacey, “Wavelength converters in dynamically-reconfigurable WDM networks,” IEEE Commun. Surv. 2(2), 2–15 (1999).
[CrossRef]

Ryf, R.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Saitoh, K.

Schmidt, B. S.

Sharping, J. E.

Shi, Y.

Shtrichman, I.

Sun, Y.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Tkach, R. W.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

Turner, A. C.

Uematsu, T.

Vorobeichik, I.

Wang, J.

Wang, K.

Warm, S.

G. Rademacher, S. Warm, K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers,” IEEE Photonics Technol. Lett. 24(21), 1929–1932 (2012).
[CrossRef]

Xu, C.

Xu, J.

Yates, J. M.

J. M. Yates, M. P. Rumsewicz, J. P. Lacey, “Wavelength converters in dynamically-reconfigurable WDM networks,” IEEE Commun. Surv. 2(2), 2–15 (1999).
[CrossRef]

IEEE Commun. Surv. (1)

J. M. Yates, M. P. Rumsewicz, J. P. Lacey, “Wavelength converters in dynamically-reconfigurable WDM networks,” IEEE Commun. Surv. 2(2), 2–15 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

G. Rademacher, S. Warm, K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multimode fibers,” IEEE Photonics Technol. Lett. 24(21), 1929–1932 (2012).
[CrossRef]

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle, “Experimental investigation of inter-modal four-wave mixing in multimode fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (5)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, CA, 2009), paper ThP19.
[CrossRef]

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” in 39th European Conference on Optical Communication 2013 (London, 2013), paper Tu.1.C.3.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of mode-selective wavelength conversion based on FWM. Two signal channels CH1 and CH2 are multiplexed to a multimode waveguide. Pump light is input from (a) port ① and (b) port ②, generating strong idlers on mode 1 and 2, respectively.

Fig. 2
Fig. 2

Second-order dispersion of a silicon waveguide with height of 250 nm and different widths for (a) TE0 and (b) TE1 modes.

Fig. 3
Fig. 3

Calculated phase mismatch as a function of signal wavelength for single-pump FWM with a pump wavelength of 1551.7 nm for (a) TE0 mode, (b) TE1 mode, (c) TE0 mode for the pump, TE1 mode for the signal, and TE0 mode for the idler, and (d) TE1 mode for the pump, TE0 mode for the signal, and TE1 mode for the idler.

Fig. 4
Fig. 4

Simulated spectra of intra-mode FWM for (a) TE0 mode, and (b) TE1 mode, as well as inter-mode FWM with (c) TE0 pump light and TE1 signal light, and (d) TE1 pump light and TE0 signal light. The insets show the distribution of the electric field component |Ex| of the TE0 and TE1 modes for a 750 nm wide silicon waveguide.

Fig. 5
Fig. 5

(a) Microscope image of the two-mode division multiplexing circuit. Scanning electron microscope (SEM) images of (b) a tapered DC based (de)multiplexer, (c) nonlinear multimode silicon waveguide, and (d) an apodized grating coupler. The insets of (b) show the details of the beginning and end sides of the multiplexer.

Fig. 6
Fig. 6

Measured transmission and mode crosstalk of the two channels (CH1 and CH2) of the two-mode division multiplexing circuit.

Fig. 7
Fig. 7

System experimental setup. The insets show the measured eye-diagrams of the CSRZ signals after the transmitter and that of the filtered idler at one of the outputs of the demultiplexer, respectively.

Fig. 8
Fig. 8

Spectra measured at (a) ouput port ① for pump input from ①, and signal light input from ① or ②, respectively, and (b) output port ② for pump input from ①, and signal light input from ① or ②, respectively.

Fig. 9
Fig. 9

BER measurement for the TE0 and TE1 idlers output from demultiplexing port ① and ②, respectively, with and without crosstalk, and the corresponding eye-diagrams.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A p ( z,t ) z =i( β 0 ( p ) β 0 * ) A p ( z,t )( β 1 ( p ) β 1 * ) A p ( z,t ) t +i n2 β n ( p ) n! ( i t ) n A p ( z,t ) + i n 2 ω 0 c l,m,n { Q plmn ( 1 ) ( ω 0 )2 A l ( z,t ) A m ( z,t ) A n * ( z,t )+ Q plmn ( 2 ) ( ω 0 )2 A l * ( z,t ) A m ( z,t ) A n ( z,t ) } = D ( p ) ( z,t )+ N ( p ) ( z,t )

Metrics