Abstract

We propose and demonstrate compact suspended silicon microring resonators with ultra-high optical quality. We achieve an intrinsic quality factor of 9.2 × 105 for the resonator with a radius of 9 μm. The high optical quality factor, high optical confinement together with the suspended structure of our device enable great potential for broad applications in biosensing, quantum photonics, nonlinear photonics, cavity optomechanics, and optical signal processing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [CrossRef]
  2. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [CrossRef]
  3. F. Dell’Olio, V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
    [CrossRef]
  4. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [CrossRef] [PubMed]
  5. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, S. Massar, “Coutinuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [CrossRef] [PubMed]
  6. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [CrossRef] [PubMed]
  7. W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).
  8. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  9. K. Yamada, “Silicon photonic wire waveguides: fundamental and applications,” in Silicon Photonics II, Vol. 119 in Topics in Applied Physics, D. J. Lockwood, L. Pavesi, eds. (Springer, 2011), pp. 1–29.
    [CrossRef]
  10. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
    [CrossRef]
  11. Y. A. Vlasov, S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [CrossRef] [PubMed]
  12. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, Heinrich Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
    [CrossRef]
  13. J. Yao, D. Leuenberger, M.-C. M. Lee, M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13, 202–208 (2007).
    [CrossRef]
  14. S. Xiao, M. H. Khan, H. Shen, M. Qi, “Compact silicon microring resonators with ultra-low propagation lass in the C band,” Opt. Express 15, 14467–14475 (2007).
    [CrossRef] [PubMed]
  15. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
    [CrossRef]
  16. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48, 958–963 (2009).
    [CrossRef] [PubMed]
  17. R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J. M. Fedeli, L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express 17, 20762–20770 (2009).
    [CrossRef] [PubMed]
  18. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
    [CrossRef] [PubMed]
  19. S. Y. Zhu, G. Q. Lo, D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283–25291 (2010).
    [CrossRef] [PubMed]
  20. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
    [CrossRef] [PubMed]
  21. A. Griffith, J. Cardenas, C. B. Poitras, M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
    [CrossRef] [PubMed]
  22. R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided componenets for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [CrossRef]
  23. P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
    [CrossRef] [PubMed]
  24. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124 (2013).
    [CrossRef] [PubMed]
  25. M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [CrossRef] [PubMed]
  26. P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [CrossRef]
  27. I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

2011 (1)

2010 (4)

2009 (4)

2008 (2)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (1)

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided componenets for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

2005 (1)

2004 (2)

2002 (1)

Agarwal, A.

Asghari, M.

Azzini, S.

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Baets, R.

Baets, R. G.

Bajoni, D.

Bartolozzi, I.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Bogaerts, W.

Bolivar, P. H.

Bondarenko, O.

Borselli, M.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided componenets for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Cai, Y.

Cardenas, J.

Chen, E.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Clemmen, S.

Daldosso, N.

Dalton, L. R.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Dell’Olio, F.

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Emelett, S. J.

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided componenets for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Emplit, Ph.

Fainman, Y.

Fan, X.

Fedeli, J. M.

Feng, D.

Feng, N.-N.

Fong, J.

Freude, W.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Galli, M.

Gao, W.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Grassani, D.

Griffith, A.

Guider, R.

Helt, L. G.

Henschel, W.

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Jaenen, P.

Jiang, W. C.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).

Johnson, T. J.

Jordana, E.

Khajavikhan, M.

Khan, M. H.

Kimerling, L. C.

Koch, T. L.

Koos, C.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Krishnamoorthy, A. V.

Kung, C.-C.

Kurz, Heinrich

Kwong, D. L.

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13, 202–208 (2007).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13, 202–208 (2007).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Li, J.

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Liang, H.

Liao, S.

Lin, P. T.

Lin, Q.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).

Lipson, M.

Liscidini, M.

Lo, G. Q.

Lu, X.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Massar, S.

McNab, S. J.

Nezhad, M. P.

Niehusmann, J.

Pafchek, R.

Painter, O.

M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).

Passaro, V. M. N.

Pavesi, L.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Phan Huy, K.

Pitanti, A.

Poitras, C. B.

Qi, M.

Qian, W.

Qiu, C.

Rabiei, P.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Schacht, E.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Shafiiha, R.

Shen, H.

Shu, J.

Simic, A.

Singh, V.

Sipe, J. E.

Soref, R. A.

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided componenets for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Sorel, M.

Steier, W. H.

Strain, M. J.

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Tummidi, R.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Vlasov, Y. A.

Vörckel, A.

Wahlbrink, T.

Webster, M. A.

White, I. M.

Wu, M. C.

J. Yao, D. Leuenberger, M.-C. M. Lee, M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13, 202–208 (2007).
[CrossRef]

Xia, Y.

Xiao, S.

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Xu, Q.

Yamada, K.

K. Yamada, “Silicon photonic wire waveguides: fundamental and applications,” in Silicon Photonics II, Vol. 119 in Topics in Applied Physics, D. J. Lockwood, L. Pavesi, eds. (Springer, 2011), pp. 1–29.
[CrossRef]

Yao, J.

J. Yao, D. Leuenberger, M.-C. M. Lee, M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13, 202–208 (2007).
[CrossRef]

Zhang, C.

Zhang, J.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).

Zhang, X.

Zhu, S. Y.

Appl. Opt. (1)

IEEE J. Sel. Top. Quant. Electron. (1)

J. Yao, D. Leuenberger, M.-C. M. Lee, M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quant. Electron. 13, 202–208 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A (1)

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided componenets for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Laser & Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Nature (1)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Opt. Express (13)

Y. A. Vlasov, S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[CrossRef] [PubMed]

R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J. M. Fedeli, L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express 17, 20762–20770 (2009).
[CrossRef] [PubMed]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283–25291 (2010).
[CrossRef] [PubMed]

M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
[CrossRef] [PubMed]

A. Griffith, J. Cardenas, C. B. Poitras, M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
[CrossRef] [PubMed]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[CrossRef] [PubMed]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, S. Massar, “Coutinuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef] [PubMed]

F. Dell’Olio, V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, M. Qi, “Compact silicon microring resonators with ultra-low propagation lass in the C band,” Opt. Express 15, 14467–14475 (2007).
[CrossRef] [PubMed]

I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (2)

K. Yamada, “Silicon photonic wire waveguides: fundamental and applications,” in Silicon Photonics II, Vol. 119 in Topics in Applied Physics, D. J. Lockwood, L. Pavesi, eds. (Springer, 2011), pp. 1–29.
[CrossRef]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455v1 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fabrication process flow for the suspended silicon microrings. (a) EBL patterning for the inner circle of the microring using ZEP-520A resist. (b) ICP partial etching of silicon. (c) Second EBL patterning with high-precision alignment for the outer circle of the microring. (d) Thorough ICP etching of silicon. (e) Isotropic etching of oxide by HF gas to form the pedestal.

Fig. 2
Fig. 2

(a) Optical field profile of the fundamental quasi-TE mode, showing the electric field component lying in the device plane. It is simulated by the finite-element method, with waveguide width w = 750 nm, height h = 260 nm, and slab thickness t = 60 nm. (b) SEM image of a suspended silicon microring with a radius of 4.5 μm. (c) SEM image of the device sidewall.

Fig. 3
Fig. 3

(a) Schematic of the experimental setup. VOA: variable optical attenuator; MZI: Mach-Zehnder interferometer. (b) and (c) Recorded cavity transmissions (blue) of the suspended silicon microrings with a radius of 9 and 4.5 μm, respectively, for resonance wavelengths at 1504 and 1524 nm. The theoretical fittings are shown in red.

Fig. 4
Fig. 4

(a) Simulated group-velocity dispersion for the fundamental quasi-TE mode (see Fig. 2(a)) of a suspended waveguide by varying the slab thickness t, assuming w = 800 nm and h = 260 nm. (b) Simulated zero-dispersion wavelength for the same mode as a function of the waveguide width and slab thickness. The waveguide height is fixed at h = 260 nm.

Fig. 5
Fig. 5

(a) Schematic of a suspended silicon waveguide and (b) Schematic of a conventional SOI wire waveguide for sensing the refractive index variation in the cladding medium. (c) Simulated BWS, for the fundamental quasi-TM mode (red) of the suspended silicon waveguide with h = 250 nm and t = 50 nm, fundamental quasi-TM (green) and quasi-TE (blue) modes of the SOI wire waveguide with a same height of h = 250 nm. The insets show the corresponding Ex component for quasi-TE and Ey component for quasi-TM mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = n eff n c ,

Metrics