Abstract

A 1.03 W optical signal-to-noise ratio (OSNR) of > 70 dB single-frequency polarization-maintained master-oscillator power amplifier (PM-MOPA) laser at 1083 nm was demonstrated. The seed laser of this laser system was a distributed Bragg reflector short cavity Yb-doped phosphate fiber oscillator. A one-stage core-pumped amplification configuration was employed, in which the typical gain is 9.7 dB and the optical-to-optical conversion efficiency is 68.7%. The estimated laser linewidth is less than 3.5 kHz, the measured polarization-extinction ratio is greater than 25 dB, and the obtained relative intensity noise of fiber laser for frequencies of over 2 MHz is less than −130 dB/Hz.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser

Changsheng Yang, Qilai Zhao, Zhouming Feng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 24(26) 29794-29799 (2016)

Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm

Shanhui Xu, Can Li, Weinan Zhang, Shupei Mo, Changsheng Yang, Xiaoming Wei, Zhouming Feng, Qi Qian, Shaoxiong Shen, Mingying Peng, Qinyuan Zhang, and Zhongmin Yang
Opt. Lett. 38(4) 501-503 (2013)

Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978 nm

Zhenpeng Huang, Huaqiu Deng, Changsheng Yang, Qilai Zhao, Yuanfei Zhang, Yuning Zhang, Zhouming Feng, Zhongmin Yang, Mingying Peng, and Shanhui Xu
Opt. Express 25(2) 1535-1541 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
    [Crossref]
  2. P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
    [Crossref]
  3. C. L. Bohler and B. I. Marton, “Helium spectroscopy using an InGaAs laser diode,” Opt. Lett. 19(17), 1346–1348 (1994).
    [Crossref] [PubMed]
  4. A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
    [Crossref]
  5. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
    [Crossref] [PubMed]
  6. F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
    [Crossref]
  7. P. Cancio Pastor, P. De Natale, G. Giusfredi, F. S. Pavone, and M. Inguscio, “High Precision Measurements on Helium at 1083 nm,” Lect. Notes Phys. 570, 314–327 (2001).
  8. C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
    [Crossref]
  9. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
    [Crossref]
  10. J. M. Daniels, L. D. Schearer, M. Leduc, and P. J. Nacher, “Polarizing 3He nuclei with neodymium La1-x NdxMgAlO19 lasers,” J. Opt. Soc. Am. B 4(7), 1133–1135 (1987).
    [Crossref]
  11. M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
    [Crossref]
  12. R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
    [Crossref]
  13. J. Xu, R. Su, H. Xiao, P. Zhou, and J. Hou, “90.4-W all-fiber single-frequency polarization-maintained 1083-nm MOPA laser employing ring-cavity single-frequency seed oscillator,” Chin. Opt. Lett. 10(3), 031402 (2012).
    [Crossref]
  14. S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
    [Crossref]
  15. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  16. S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
    [Crossref] [PubMed]
  17. Z. Feng, S. Mo, S. Xu, X. Huang, Z. Zhong, C. Yang, C. Li, W. Zhang, D. Chen, and Z. Yang, “A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm,” Appl. Phys. Express 6(5), 052701 (2013).
    [Crossref]
  18. S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21(10), 12419–12423 (2013).
    [Crossref] [PubMed]
  19. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]

2013 (4)

2012 (1)

2011 (1)

2009 (1)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

2008 (1)

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

2005 (1)

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

2000 (1)

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

1999 (1)

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

1998 (1)

D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
[Crossref]

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

1996 (1)

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

1995 (1)

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
[Crossref]

1994 (1)

1987 (1)

Arie, A.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
[Crossref]

Bianchini, G.

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

Bohler, C. L.

Cancio, P.

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

Cancio Pastor, P.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

Carlson, C. G.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Chen, D.

Coleman, J. J.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Daniels, J. M.

De Natale, P.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
[Crossref]

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

Dong, J.

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Dragic, P. D.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Feng, Y.

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Feng, Z.

Giusfredi, G.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

Gong, W.

Graf, B. W.

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Guo, H.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

Hou, J.

Huang, S.

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Huang, X.

Z. Feng, S. Mo, S. Xu, X. Huang, Z. Zhong, C. Yang, C. Li, W. Zhang, D. Chen, and Z. Yang, “A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm,” Appl. Phys. Express 6(5), 052701 (2013).
[Crossref]

S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21(10), 12419–12423 (2013).
[Crossref] [PubMed]

Inguscio, M.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
[Crossref]

Knight, D. J. E.

D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
[Crossref]

Laporta, P.

D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
[Crossref]

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

Leduc, M.

Li, C.

Z. Feng, S. Mo, S. Xu, X. Huang, Z. Zhong, C. Yang, C. Li, W. Zhang, D. Chen, and Z. Yang, “A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm,” Appl. Phys. Express 6(5), 052701 (2013).
[Crossref]

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
[Crossref] [PubMed]

Lin, Z.

Luo, B.

Marton, B. I.

Minardi, F.

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
[Crossref]

Mo, S.

Modugno, G.

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

Musha, M.

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Nacher, P. J.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Paschotta, R.

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Pastor, P.

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

Pastor, P. C.

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
[Crossref]

Pavone, F.

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

Pavone, F. S.

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
[Crossref]

Peng, M.

Peng, X.

Prevedelli, M.

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

Price, R. K.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Qian, Q.

Qiu, J.

Rosenman, G.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

Schearer, L. D.

Shen, S.

Shirakawa, A.

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Su, R.

Swenson, G. R.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Ueda, K.

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Wei, X.

Wu, T.

Xiao, H.

Xu, J.

Xu, S.

Yang, C.

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38(4), 501–503 (2013).
[Crossref] [PubMed]

Z. Feng, S. Mo, S. Xu, X. Huang, Z. Zhong, C. Yang, C. Li, W. Zhang, D. Chen, and Z. Yang, “A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm,” Appl. Phys. Express 6(5), 052701 (2013).
[Crossref]

Yang, T.

Yang, Z.

Zeppini, P.

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

Zhan, Y.

Zhang, Q.

Zhang, W.

Zhong, Z.

Z. Feng, S. Mo, S. Xu, X. Huang, Z. Zhong, C. Yang, C. Li, W. Zhang, D. Chen, and Z. Yang, “A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm,” Appl. Phys. Express 6(5), 052701 (2013).
[Crossref]

Zhou, P.

Appl. Phys. Express (1)

Z. Feng, S. Mo, S. Xu, X. Huang, Z. Zhong, C. Yang, C. Li, W. Zhang, D. Chen, and Z. Yang, “A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm,” Appl. Phys. Express 6(5), 052701 (2013).
[Crossref]

Chin. Opt. Lett. (1)

Eur. Phys. J. D (1)

D. J. E. Knight, F. Minardi, P. De Natale, and P. Laporta, “Frequency doubling of a fibre-amplified 1083 nm DBR laser,” Eur. Phys. J. D 3(3), 211–216 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005).
[Crossref]

Opt. Commun. (4)

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176(4-6), 453–458 (2000).
[Crossref]

M. Prevedelli, P. Cancio, G. Giusfredi, F. S. Pavone, and M. Inguscio, “Frequency control of DBR diode lasers at 1.08 micrometer and precision spectroscopy of helium,” Opt. Commun. 125(4-6), 231–236 (1996).
[Crossref]

R. Paschotta, D. C. Hanna, P. De Natale, G. Modugno, M. Inguscio, and P. Laporta, “Power amplifier for 1083 nm using ytterbium doped fibre,” Opt. Commun. 136(3-4), 243–246 (1997).
[Crossref]

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117(1-2), 78–82 (1995).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

F. Minardi, G. Bianchini, P. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Measurement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett. 82(6), 1112–1115 (1999).
[Crossref]

Proc. SPIE (1)

C. G. Carlson, P. D. Dragic, B. W. Graf, R. K. Price, J. J. Coleman, and G. R. Swenson, “High power Yb-Doped Fiber Laser-Based LIDAR For Space Weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Other (1)

P. Cancio Pastor, P. De Natale, G. Giusfredi, F. S. Pavone, and M. Inguscio, “High Precision Measurements on Helium at 1083 nm,” Lect. Notes Phys. 570, 314–327 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experiment setup of the single-frequency 1083 nm PM-MOPA fiber laser.
Fig. 2
Fig. 2 (a). Output spectra of the fiber laser with different input powers of seed oscillator. Inset: Output spectra of the seed oscillator with PM BPF and no PM BPF used. (b). Output spectra of the PM-MOPA laser with PM BPF and no PM BPF used.
Fig. 3
Fig. 3 (a). Measured laser output power versus the launched pump power for different input powers of seed oscillator. Inset: Power stability of the fiber laser in 8 hours. (b). Net gain versus the launched pump power for different input powers of seed oscillator.
Fig. 4
Fig. 4 (a). Measured self-heterodyne signal using a 20 km fiber delay. Inset: The longitudinal modes operation of the fiber laser. (b). Measured RIN of the fiber laser. Inset: DOP of the fiber laser (red dot) represented by a Poincaré sphere.

Metrics