Abstract

We demonstrate a laser for the silicon photonics platform by hybrid integration with a III/V reflective semiconductor optical amplifier coupled to a 220 nm silicon-on-insulator half-cavity. We utilize a novel ultra-thin silicon edge coupler. A single adiabatic microring based inline reflector is used to select a lasing mode, as compared to the multiple rings and Bragg gratings used in many previous results. Despite the simplified design, the laser was measured to have on-chip 9.8mW power, less than 220KHz linewidth, over 45dB side mode suppression ratio, less than −135dB/Hz relative intensity noise, and 2.7% wall plug efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y. K. Chen, “Monolithic silicon photonic circuits enable 112-Gb/s PDM- QPSK transmission over 2560-km SSMF,” in European Conference on Optical Communications (2013), paper We.2.B.1.
  2. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
    [CrossRef] [PubMed]
  3. Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [CrossRef] [PubMed]
  4. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [CrossRef]
  5. G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).
  6. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [CrossRef] [PubMed]
  7. A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Power-efficient III-V/Silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
    [CrossRef] [PubMed]
  8. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
    [CrossRef] [PubMed]
  9. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  10. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. H. Duan, D. Bordel, J. M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
    [CrossRef] [PubMed]
  11. T. Creazzo, E. Marchena, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, A. Mizrahi, “Integrated tunable CMOS laser,” Opt. Express 21(23), 28048–28053 (2013).
    [CrossRef]
  12. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  13. T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [CrossRef] [PubMed]
  14. http://opsisfoundry.org
  15. M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [CrossRef]
  16. K. Nemoto, T. Kita, H. Yamada, “Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators,” Appl. Phys. Express 5(8), 082701 (2012).
    [CrossRef]
  17. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
    [CrossRef]
  18. X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Efficient WDM Laser Sources towards Terabyte/s Silicon Photonic Interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
    [CrossRef]
  19. S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. D. Thacker, J. Lee, K. Raj, X. Zheng, A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V-CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
    [CrossRef]
  20. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
    [CrossRef] [PubMed]
  21. M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
    [CrossRef]
  22. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [CrossRef] [PubMed]
  23. G. T. Paloczi, J. Scheuer, A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photonics Technol. Lett. 17(2), 390–392 (2005).
    [CrossRef]
  24. W. Shi, H. Yun, W. Zhang, C. Lin, T. K. Chang, Y. Wang, N. A. F. Jaeger, L. Chrostowski, “Ultra-compact, high-Q silicon microdisk reflectors,” Opt. Express 20(20), 21840–21846 (2012).
    [CrossRef] [PubMed]
  25. K. Kallimani, M. J. O’Mahony, “Calculation of optical power emitted from a fibre grating laser,” IEE Proc. Optoelectron. 145(6), 319–324 (1998).
    [CrossRef]
  26. L. G. Kazovsky, “Coherent optical receivers: performance analysis and laser linewidth requirements,” Proc. SPIE 0568, 24–31 (1985).
    [CrossRef]
  27. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [CrossRef] [PubMed]

2013 (7)

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. H. Duan, D. Bordel, J. M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

T. Creazzo, E. Marchena, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, A. Mizrahi, “Integrated tunable CMOS laser,” Opt. Express 21(23), 28048–28053 (2013).
[CrossRef]

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

X. Zheng, S. Lin, Y. Luo, J. Yao, G. Li, S. S. Djordjevic, J. Lee, H. D. Thacker, I. Shubin, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Efficient WDM Laser Sources towards Terabyte/s Silicon Photonic Interconnects,” J. Lightwave Technol. 31(24), 4142–4154 (2013).
[CrossRef]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. D. Thacker, J. Lee, K. Raj, X. Zheng, A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V-CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[CrossRef]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

2012 (10)

W. Shi, H. Yun, W. Zhang, C. Lin, T. K. Chang, Y. Wang, N. A. F. Jaeger, L. Chrostowski, “Ultra-compact, high-Q silicon microdisk reflectors,” Opt. Express 20(20), 21840–21846 (2012).
[CrossRef] [PubMed]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
[CrossRef] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[CrossRef] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
[CrossRef] [PubMed]

K. Nemoto, T. Kita, H. Yamada, “Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators,” Appl. Phys. Express 5(8), 082701 (2012).
[CrossRef]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[CrossRef] [PubMed]

A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Power-efficient III-V/Silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
[CrossRef] [PubMed]

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (3)

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).

2006 (1)

2005 (1)

G. T. Paloczi, J. Scheuer, A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photonics Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

1998 (1)

K. Kallimani, M. J. O’Mahony, “Calculation of optical power emitted from a fibre grating laser,” IEE Proc. Optoelectron. 145(6), 319–324 (1998).
[CrossRef]

1985 (1)

L. G. Kazovsky, “Coherent optical receivers: performance analysis and laser linewidth requirements,” Proc. SPIE 0568, 24–31 (1985).
[CrossRef]

Asghari, M.

Baehr-Jones, T.

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Bessette, J. T.

Biberman, A.

Bijlani, B. J.

Blivin, C. C.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Boller, K.-J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Bordel, D.

Bowers, J. E.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Cai, H.

Cai, Y.

Camacho-Aguilera, R. E.

Cassan, E.

Chang, T. K.

Chrostowski, L.

Cohen, O.

Creazzo, T.

Crozat, P.

Cunningham, J. E.

Dallesasse, J. M.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Djordjevic, S. S.

Duan, G. H.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Fang, A. W.

Fathololoumi, S.

Fedeli, J. M.

Fédéli, J. M.

Feng, D.

Fong, J.

Galland, C.

Gardes, F. Y.

G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).

Gould, M.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

Grist, S.

Hartmann, J. M.

He, L.

Hill, C.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

Hochberg, M.

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

Jaeger, N. A. F.

Jany, C.

Jeong, S. H.

Jones, R.

Kallimani, K.

K. Kallimani, M. J. O’Mahony, “Calculation of optical power emitted from a fibre grating laser,” IEE Proc. Optoelectron. 145(6), 319–324 (1998).
[CrossRef]

Kazovsky, L. G.

L. G. Kazovsky, “Coherent optical receivers: performance analysis and laser linewidth requirements,” Proc. SPIE 0568, 24–31 (1985).
[CrossRef]

Keyvaninia, S.

Kimerling, L. C.

Kita, T.

K. Nemoto, T. Kita, H. Yamada, “Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators,” Appl. Phys. Express 5(8), 082701 (2012).
[CrossRef]

Klein, E. J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Kopp, C.

Krasulick, S. B.

Krishnamoorthy, A. V.

Kurahashi, T.

Lamponi, M.

Le Liepvre, A.

Lee, A.

Lee, C. J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Lee, D. C.

Lee, J.

Lee, J. H.

Lelarge, F.

Li, G.

Lim, A. E.

Lin, C.

Lin, S.

Liu, H.

Lo, G. Q.

Luff, B. J.

Luo, Y.

Make, D.

Marchena, E.

Marris-Morini, D.

Mashanovish, G.

G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).

Mekis, A.

Michel, J.

Mizrahi, A.

Morito, K.

Nemoto, K.

K. Nemoto, T. Kita, H. Yamada, “Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators,” Appl. Phys. Express 5(8), 082701 (2012).
[CrossRef]

O’Mahony, M. J.

K. Kallimani, M. J. O’Mahony, “Calculation of optical power emitted from a fibre grating laser,” IEE Proc. Optoelectron. 145(6), 319–324 (1998).
[CrossRef]

Ocheltree, S.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

Offerhaus, H. L.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Oldenbeuving, R. M.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Osmond, J.

Paloczi, G. T.

G. T. Paloczi, J. Scheuer, A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photonics Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

Paniccia, M. J.

Park, H.

Patel, N.

Polzer, A.

Pomerene, A.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

Pozzi, F.

Qian, W.

Raj, K.

Reed, G. T.

G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).

Roelkens, G.

Romagnoli, M.

Scheuer, J.

G. T. Paloczi, J. Scheuer, A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photonics Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

Seddighian, P.

Seeds, A.

Sekiguchi, S.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Shafiiha, R.

Shi, W.

Shubin, I.

Song, H.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Spann, J. Y.

Stone, R. J.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

Tanaka, S.

Tanaka, Y.

Thacker, H.

Thacker, H. D.

Thomson, D. J.

G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
[CrossRef] [PubMed]

Trotter, D. C.

Van Orden, D.

Van Thourhout, D.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. H. Duan, D. Bordel, J. M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Vivien, L.

Wang, T.

Wang, X.

Wang, Y.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
[CrossRef] [PubMed]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

Yamada, H.

K. Nemoto, T. Kita, H. Yamada, “Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators,” Appl. Phys. Express 5(8), 082701 (2012).
[CrossRef]

Yang, S.

Yao, J.

Yariv, A.

G. T. Paloczi, J. Scheuer, A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photonics Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

Yu, P.

Yun, H.

Zhang, W.

Zhang, Y.

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

Zheng, X.

Zilkie, A. J.

Zimmermann, H.

Zortman, W. A.

Appl. Phys. Express (1)

K. Nemoto, T. Kita, H. Yamada, “Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators,” Appl. Phys. Express 5(8), 082701 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[CrossRef]

IEE Proc. Optoelectron. (1)

K. Kallimani, M. J. O’Mahony, “Calculation of optical power emitted from a fibre grating laser,” IEE Proc. Optoelectron. 145(6), 319–324 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

G. T. Paloczi, J. Scheuer, A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photonics Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10(1), 015804 (2013).
[CrossRef]

Nat. Photonics (2)

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

G. T. Reed, G. Mashanovish, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 548 (2010).

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

Opt. Express (14)

W. Shi, H. Yun, W. Zhang, C. Lin, T. K. Chang, Y. Wang, N. A. F. Jaeger, L. Chrostowski, “Ultra-compact, high-Q silicon microdisk reflectors,” Opt. Express 20(20), 21840–21846 (2012).
[CrossRef] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[CrossRef] [PubMed]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[CrossRef] [PubMed]

A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Power-efficient III-V/Silicon external cavity DBR lasers,” Opt. Express 20(21), 23456–23462 (2012).
[CrossRef] [PubMed]

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. H. Duan, D. Bordel, J. M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

T. Creazzo, E. Marchena, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, A. Mizrahi, “Integrated tunable CMOS laser,” Opt. Express 21(23), 28048–28053 (2013).
[CrossRef]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
[CrossRef] [PubMed]

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

S. Lin, S. S. Djordjevic, J. E. Cunningham, I. Shubin, Y. Luo, J. Yao, G. Li, H. D. Thacker, J. Lee, K. Raj, X. Zheng, A. V. Krishnamoorthy, “Vertical-coupled high-efficiency tunable III-V-CMOS SOI hybrid external-cavity laser,” Opt. Express 21(26), 32425–32431 (2013).
[CrossRef]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20(28), 29223–29236 (2012).
[CrossRef] [PubMed]

Proc. SPIE (1)

L. G. Kazovsky, “Coherent optical receivers: performance analysis and laser linewidth requirements,” Proc. SPIE 0568, 24–31 (1985).
[CrossRef]

Other (2)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y. K. Chen, “Monolithic silicon photonic circuits enable 112-Gb/s PDM- QPSK transmission over 2560-km SSMF,” in European Conference on Optical Communications (2013), paper We.2.B.1.

http://opsisfoundry.org

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Isometric diagram of the layout of the laser system. The InP based RSOA is shown bonded to the SOI chip, which includes a tunable AMR reflector to close the laser cavity.

Fig. 2
Fig. 2

Mode Profiles (a) typical laser diode (b) 220 nm x 500 nm silicon waveguide (c) 90nm x 4.25 um silicon waveguide.

Fig. 3
Fig. 3

Loss as a function of the gap between the SOI chip and RSOA.

Fig. 4
Fig. 4

(a) AMR layout and (b) transmission spectrum.

Fig. 5
Fig. 5

Test Setup image showing silicon photonic chip (bottom) and RSOA chip (top).

Fig. 6
Fig. 6

Spectrum of our hybrid-integrated laser.

Fig. 7
Fig. 7

CW L-I curve showing a threshold current of around 60 mA and the red fitting curve shows a slope efficiency of 42 mW/A.

Fig. 8
Fig. 8

Heterodyne experiment diagram.

Fig. 9
Fig. 9

Heterodyne spectrum. Blue dots are experiment data, and red curve is Lorentz fit showing a combined linewidth of 220 kHz.

Fig. 10
Fig. 10

Measured lasing spectra of the tunable laser with various levels of thermal tuning power.

Fig. 11
Fig. 11

Center lasing wavelength as a function of heating power.

Metrics