Abstract

Optical injection locking (OIL) is an effective approach for significantly enhancing the modulation bandwidths of VCSELs. The frequency responses of OIL-VCSELs are, however, very sensitive to the applied OIL conditions. This brings about strong difficulties in practically utilizing the OIL-enhanced modulation bandwidths to achieve highly robust transmission performances of directly modulated OIL-VCSEL-based multi-mode fibre (MMF) links for cost-sensitive application scenarios such as data-centers. In this paper, directly modulated OIL-VCSEL-based real-time dual-band optical OFDM (OOFDM) transceivers with tunability in both the electrical and optical domains are experimentally demonstrated, for the first time, utilizing DACs/ADCs at sampling speeds as low as 4GS/s. The transceivers can support 15.125Gb/s adaptive OOFDM transmissions over 100m OM2 MMF links based on intensity modulation and direct detection. More importantly, the adaptability and tunability of the demonstrated transceivers enable the achievement of excellent robustness of the aggregated OOFDM transmission capacity to OIL condition variations. It is shown that, over a large diversity of OIL conditions that give rise to significantly different system frequency responses, the aggregated OOFDM transmission capacity only vary by <11% in the aforementioned transmission link.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust and tunable 16.375Gb/s dual-band optical OFDM transmissions over directly modulated VCSEL-based 200m OM2 MMFs

M.L. Deng, N. Jiang, X. Duan, R.P. Giddings, X.W. Yi, B. Y. Cao, S. Mansoor, K. Qiu, and J.M. Tang
Opt. Express 23(1) 373-383 (2015)

Record-high and robust 17.125 Gb/s gross-rateover 25 km SSMF transmissions of real-time dual-band optical OFDM signals directly modulated by 1 GHz RSOAs

Q. W. Zhang, E. Hugues-Salas, Y. Ling, H. B. Zhang, R. P. Giddings, J. J. Zhang, M. Wang, and J. M. Tang
Opt. Express 22(6) 6339-6348 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Paraschis, “Advancements in data-center networking and the importance of optical interconnections,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (Institution of Engineering and Technology, London, 2013), Paper Th.2.F.3.
    [Crossref]
  2. C. Kachris and I. Tomkos, “Energy-efficient bandwidth allocation in optical OFDM-based data center networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Optical Society of America, Los Angeles, California, 2012), paper JTh2A.34.
  3. Y. Benlachtar, R. Bouziane, R. I. Killey, C. R. Berger, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, and M. Glick, “Optical OFDM for the data center,” in Proceeding of the 14th International Conference on Transparent Optical Networks (Munich, Germany, 2010), Paper We.A4.3.
  4. E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
    [Crossref]
  5. C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
    [Crossref]
  6. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
    [Crossref]
  7. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref] [PubMed]
  8. X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
    [Crossref]
  9. X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
    [Crossref]
  10. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [Crossref]
  11. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
    [Crossref]
  12. N. Hoghooghi, S. Bhooplapur, and P. J. Delfyett, “Effects of injection power and frequency detuning on noise characteristics of an injection-locked VCSEL,” in Proceedings of 2012 IEEE Photonics Conference (IEEE Photonics Society, Burlingame, CA, 2012), pp. 159–160.
    [Crossref]
  13. J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
    [Crossref]
  14. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (Institution of Engineering and Technology, London, 2013), Paper P.6.7.
  15. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
    [Crossref] [PubMed]

2012 (3)

2011 (1)

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

2008 (1)

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
[Crossref]

2007 (1)

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

2006 (1)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[Crossref]

2003 (1)

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

1997 (1)

J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[Crossref]

1985 (1)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Amann, M.-C.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Chang-Hasnain, C. J.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[Crossref]

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Chen, H.

J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[Crossref]

Chow, W. W.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Chrostowski, L.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[Crossref]

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Faraji, B.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Giddings, R.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Giddings, R. P.

Hang, C.-H.

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Hofmann, W.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Hong, Y.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
[Crossref]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

Hugues-Salas, E.

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Jin, X.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Jin, X. Q.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
[Crossref]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
[Crossref]

Liu, J.

J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[Crossref]

Mansoor, S.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
[Crossref]

Meng, X.

J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[Crossref]

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Quinlan, T.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Shore, K. A.

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
[Crossref]

Simpson, T.

J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[Crossref]

Spencer, P. S.

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
[Crossref]

Tang, J.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Tang, J. M.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
[Crossref]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
[Crossref]

Villafranca, A.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
[Crossref]

Walker, S.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
[Crossref] [PubMed]

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wei, J.

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wieczorek, S.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

Zhao, X.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-H. Hang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Liu, H. Chen, X. Meng, and T. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9(10), 1325–1327 (1997).
[Crossref]

IEEE Photonics J. (2)

X. Jin, J. Wei, R. Giddings, T. Quinlan, S. Walker, and J. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, and J. M. Tang, “Directly modulated VCSEL-based real-time 11.25-Gb/s optical OFDM transmission over 2000-m legacy MMFs,” IEEE Photonics J. 4(1), 143–154 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[Crossref]

J. Opt. Networking (1)

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fibre-based local area networks,” J. Opt. Networking 7(3), 198–214 (2008).
[Crossref]

Opt. Express (2)

Other (5)

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (Institution of Engineering and Technology, London, 2013), Paper P.6.7.

L. Paraschis, “Advancements in data-center networking and the importance of optical interconnections,” in Proceedings of 39th European Conference and Exhibition on Optical Communication (Institution of Engineering and Technology, London, 2013), Paper Th.2.F.3.
[Crossref]

C. Kachris and I. Tomkos, “Energy-efficient bandwidth allocation in optical OFDM-based data center networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Optical Society of America, Los Angeles, California, 2012), paper JTh2A.34.

Y. Benlachtar, R. Bouziane, R. I. Killey, C. R. Berger, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, and M. Glick, “Optical OFDM for the data center,” in Proceeding of the 14th International Conference on Transparent Optical Networks (Munich, Germany, 2010), Paper We.A4.3.

N. Hoghooghi, S. Bhooplapur, and P. J. Delfyett, “Effects of injection power and frequency detuning on noise characteristics of an injection-locked VCSEL,” in Proceedings of 2012 IEEE Photonics Conference (IEEE Photonics Society, Burlingame, CA, 2012), pp. 159–160.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Real-time dual-band OOFDM OM2 MMF system using a directly modulated uncooled OIL-VCSEL. TLS: tunable laser source; VOA: variable optical attenuator; MMF: multi-mode fiber; PC: polarization controller; OC: optical circulator; OI: optical isolator; MCPC: mode conditioning patch-cord; LO: local oscillator.

Fig. 2
Fig. 2

VCSEL injection locking conditions: wavelength detuning range against optical injection power ratio for a 7.18mA bias current.

Fig. 3
Fig. 3

(a) OIL-VCSEL frequency responses for different wavelength detuning values at a fixed optical injection power ratio of 5.7dB. (b) OIL-VCSEL frequency responses for different injection power ratios at a fixed wavelength detuning value of 0.29 nm, (c) OIL-VCSEL frequency responses for different optical injection power ratios at a fixed wavelength detuning value of 0.03 nm.

Fig. 4
Fig. 4

OIL-VCSEL noise spectra measured after the PIN. (a) for different wavelength detuning at an optical injection power ratio of 5.3 dB, and (b) for different optical injection power ratios at a wavelength detuning of 0.27 nm.

Fig. 5
Fig. 5

Spectra of the dual-band OFDM RF signals measured after PIN + TIA: (a) free-running VCSEL, (b) OIL-VCSEL with a 6.125GHz passband; (c) OIL-VCSEL with a 6.5GHz passband.

Fig. 6
Fig. 6

Measured robustness of the aggregated signal transmission capacity. (a) Signal transmission capacities versus wavelength detuning. (b) Signal transmission capacities versus optical power injection ratio.

Fig. 7
Fig. 7

(a) Representative BER performance of the back-to-back system and 100m OM2 MMF systems. The aggregated signal transmission capacity is 14.25 Gb/s. (b) Optimized bit loading profiles for both sub-bands.

Tables (1)

Tables Icon

Table 1 OFDM Transceiver and System Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| H(f) | 2 = 1 1+ ( f f 0 ) 2 1 [ 1 ( f f res ) 2 ] 2 + ( γ 2π f res ) 2 ( f f res ) 2 ,
f res =Δf α(G,ΔN)GΔN 4π .
f res =Δf α(G,ΔN)GΔN 4π Δ pm .

Metrics