Abstract

This work develops and demonstrates a double sideband with optical carrier suppression (DSBCS) modulation scheme for a hybrid wireless and cable television system based on a phase modulator (PM) and a polarization beam splitter (PBS). A carrier suppression ratio greater than 20 dB is achieved between two sidebands. In addition, the values of carrier-to-noise ratio, composite second-order and composite triple beat in various channels after 25 km of transmission are higher than the threshold value, and the power penalty of microwave signal in back-to-back and 25 km transmission perform well. Additionally, the constellation diagram of upstream signal is successfully recovered. Above results demonstrate that the proposed scheme is highly promising for practical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ikeda, T. Kuri, K. Kitayama, “Simultaneous three band modulation and fiber-optic transmission of 2.5 Gb/s baseband, microwave-, and 60 GHz band signals on a single wavelength,” J. Lightwave Technol. 21(12), 3194–3202 (2003).
    [CrossRef]
  2. J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
    [CrossRef]
  3. R. Liu, M. E. Mousa Pasandi, S. LaRochelle, K. Wu, and R. Kashyap, “OFDM signal transmission by direct modulation of a doped fiber external cavity semiconductor laser,”in Proc. Opt. Fiber Commun. (OFC) (2008), OThN5.
  4. C.-T. Lin, P.-T. Shih, W.-J. Jiang, J. J. Chen, P.-C. Peng, S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17(22), 19749–19756 (2009).
    [CrossRef] [PubMed]
  5. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  6. J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. F. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol. 28(16), 2376–2397 (2010).
    [CrossRef]
  7. W. Y. Lin, C. H. Chang, P. C. Peng, H. H. Lu, C. H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system,” Opt. Express 18(10), 10301–10307 (2010).
    [CrossRef] [PubMed]
  8. P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
    [CrossRef]
  9. P. C. Peng, H. Y. Wang, R. L. Lan, R. Y. Peng, “Microwave transport systems that use semiconductor laser as radio-frequency amplifier,” Opt. Commun. 285(9), 2433–2438 (2012).
    [CrossRef]
  10. C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
    [CrossRef]
  11. C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
    [CrossRef]
  12. C. W. Chow, Y. H. Lin, “Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation,” Opt. Express 20(8), 9243–9248 (2012).
    [CrossRef] [PubMed]
  13. Y. T. Hsueh, Z. Jia, H. C. Chien, J. Yu, G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photonics Technol. Lett. 21(18), 1338–1340 (2009).
    [CrossRef]
  14. M. F. Huang, J. Yu, Z. Jia, G. K. Chang, “Simultaneous generation of centralized lightwaves and double/single sideband optical millimeter-wave requiring only low-frequency local oscillator signals for radio-over-fiber systems,” J. Lightwave Technol. 26(15), 2653–2662 (2008).
    [CrossRef]
  15. Y. T. Hsueh, H. C. Chien, A. Chowdhury, J. Yu, G. K. Chang, “Performance assessment of radio links using millimeter-wave over fiber technology with carrier suppression through modulation index enhancement,” J. Opt. Commun. Netw. 3(3), 254–258 (2011).
    [CrossRef]
  16. G. R. Lin, Y. C. Chi, Y. C. Li, J. Chen, “Using a L-band weak-resonant-cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol. 31(7), 1079–1087 (2013).
    [CrossRef]
  17. C. H. Yeh, C. W. Chow, H. Y. Chen, “Simple colorless WDM-PON with Rayleigh backscattering noise circumvention employing m-QAM OFDM downstream and remodulated OOK upstream signals,” J. Lightwave Technol. 30(13), 2151–2155 (2012).
    [CrossRef]
  18. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999).

2013

2012

2011

P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
[CrossRef]

Y. T. Hsueh, H. C. Chien, A. Chowdhury, J. Yu, G. K. Chang, “Performance assessment of radio links using millimeter-wave over fiber technology with carrier suppression through modulation index enhancement,” J. Opt. Commun. Netw. 3(3), 254–258 (2011).
[CrossRef]

2010

2009

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

C.-T. Lin, P.-T. Shih, W.-J. Jiang, J. J. Chen, P.-C. Peng, S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17(22), 19749–19756 (2009).
[CrossRef] [PubMed]

Y. T. Hsueh, Z. Jia, H. C. Chien, J. Yu, G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photonics Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

2008

2007

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

2003

Chang, C. H.

Chang, G. K.

Chen, H. Y.

Chen, J.

Chen, J. J.

Chi, S.

Chi, Y. C.

Chien, H. C.

Chiou, B. S.

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chow, C. W.

Chowdhury, A.

Dai, S. P.

Dong, Z.

Hsueh, Y. T.

Huang, C. H.

P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
[CrossRef]

W. Y. Lin, C. H. Chang, P. C. Peng, H. H. Lu, C. H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system,” Opt. Express 18(10), 10301–10307 (2010).
[CrossRef] [PubMed]

Huang, M. F.

Ikeda, K.

Jia, Z.

Jian, W.

Jiang, W.-J.

Kitayama, K.

Kitayama, K. I.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Kuri, T.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

K. Ikeda, T. Kuri, K. Kitayama, “Simultaneous three band modulation and fiber-optic transmission of 2.5 Gb/s baseband, microwave-, and 60 GHz band signals on a single wavelength,” J. Lightwave Technol. 21(12), 3194–3202 (2003).
[CrossRef]

Lan, R. L.

P. C. Peng, H. Y. Wang, R. L. Lan, R. Y. Peng, “Microwave transport systems that use semiconductor laser as radio-frequency amplifier,” Opt. Commun. 285(9), 2433–2438 (2012).
[CrossRef]

Li, Y. C.

Lin, C. T.

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Lin, C.-T.

Lin, G. R.

Lin, W. Y.

Lin, Y. H.

Liu, C.

Lu, H. H.

P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
[CrossRef]

W. Y. Lin, C. H. Chang, P. C. Peng, H. H. Lu, C. H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system,” Opt. Express 18(10), 10301–10307 (2010).
[CrossRef] [PubMed]

Peng, C. F.

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Peng, P. C.

P. C. Peng, H. Y. Wang, R. L. Lan, R. Y. Peng, “Microwave transport systems that use semiconductor laser as radio-frequency amplifier,” Opt. Commun. 285(9), 2433–2438 (2012).
[CrossRef]

P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
[CrossRef]

W. Y. Lin, C. H. Chang, P. C. Peng, H. H. Lu, C. H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system,” Opt. Express 18(10), 10301–10307 (2010).
[CrossRef] [PubMed]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Peng, P.-C.

Peng, R. Y.

P. C. Peng, H. Y. Wang, R. L. Lan, R. Y. Peng, “Microwave transport systems that use semiconductor laser as radio-frequency amplifier,” Opt. Commun. 285(9), 2433–2438 (2012).
[CrossRef]

Peng, W. R.

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Shih, P.-T.

Sono, T.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Tamura, K.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Toda, H.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Vegas Olmos, J. J.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Wang, H. Y.

P. C. Peng, H. Y. Wang, R. L. Lan, R. Y. Peng, “Microwave transport systems that use semiconductor laser as radio-frequency amplifier,” Opt. Commun. 285(9), 2433–2438 (2012).
[CrossRef]

Yao, J. P.

Yeh, C. H.

Yen, L. H.

P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
[CrossRef]

Yu, J.

IEEE Photonics Technol. Lett.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K. I. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photonics Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

P. C. Peng, L. H. Yen, H. H. Lu, C. H. Huang, “Hybrid cable television/radio-over-fiber transport system based on polarization modulation technique,” IEEE Photonics Technol. Lett. 23(13), 860–862 (2011).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photonics Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Y. T. Hsueh, Z. Jia, H. C. Chien, J. Yu, G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photonics Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

J. Lightwave Technol.

J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. F. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol. 28(16), 2376–2397 (2010).
[CrossRef]

C. H. Yeh, C. W. Chow, H. Y. Chen, “Simple colorless WDM-PON with Rayleigh backscattering noise circumvention employing m-QAM OFDM downstream and remodulated OOK upstream signals,” J. Lightwave Technol. 30(13), 2151–2155 (2012).
[CrossRef]

G. R. Lin, Y. C. Chi, Y. C. Li, J. Chen, “Using a L-band weak-resonant-cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol. 31(7), 1079–1087 (2013).
[CrossRef]

K. Ikeda, T. Kuri, K. Kitayama, “Simultaneous three band modulation and fiber-optic transmission of 2.5 Gb/s baseband, microwave-, and 60 GHz band signals on a single wavelength,” J. Lightwave Technol. 21(12), 3194–3202 (2003).
[CrossRef]

C. T. Lin, J. Chen, S. P. Dai, P. C. Peng, S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightwave Technol. 26(15), 2449–2459 (2008).
[CrossRef]

M. F. Huang, J. Yu, Z. Jia, G. K. Chang, “Simultaneous generation of centralized lightwaves and double/single sideband optical millimeter-wave requiring only low-frequency local oscillator signals for radio-over-fiber systems,” J. Lightwave Technol. 26(15), 2653–2662 (2008).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

J. Opt. Commun. Netw.

Opt. Commun.

P. C. Peng, H. Y. Wang, R. L. Lan, R. Y. Peng, “Microwave transport systems that use semiconductor laser as radio-frequency amplifier,” Opt. Commun. 285(9), 2433–2438 (2012).
[CrossRef]

Opt. Express

Other

W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999).

R. Liu, M. E. Mousa Pasandi, S. LaRochelle, K. Wu, and R. Kashyap, “OFDM signal transmission by direct modulation of a doped fiber external cavity semiconductor laser,”in Proc. Opt. Fiber Commun. (OFC) (2008), OThN5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of utilizing a PBS to achieve OCS format in a polarization modulated 15GHz optical transport system. (PC: polarization controller, PM: phase modulator, PBS: polarization beam splitter).

Fig. 2
Fig. 2

Schematic diagram of the proposed hybrid microwave transport system (LD: laser diode, OC: optical coupler, IM: intensity modulator, PG: pattern generator, PD: photo detector, BPF: band-pass filter, LPF: low-pass filter, BERT: bit-error-rate tester, DCA: digital communications analyzer, AWG: arbitrary waveform generator).

Fig. 3
Fig. 3

The measured optical spectra and electric spectra diagrams.

Fig. 4
Fig. 4

Measured CNR values under various CATV channels.

Fig. 5
Fig. 5

Measured CSO values under various CATV channels.

Fig. 6
Fig. 6

Measured CTB values under various CATV channels.

Fig. 7
Fig. 7

Measured BER curves and eye diagrams.

Fig. 8
Fig. 8

Measured BER curves and constellation diagrams.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CNR= (mI) 2 2B[ N thermal + N laser + N nonlinear ]
CSO=10log[ mD λ c 2 Lf 4c 16 (Δτ) 2 + 4 λ c 4 L 2 π 2 f 6 c 2 ]+10log N CSO +6
CTB=10log[ 9 m 2 D 2 λ c 4 L 2 f 2 4c (4 (Δτ) 2 +4 π 2 f) ]+10log N CTB +6

Metrics