Abstract

By using a charge-coupled device (CCD) as the detector, side-scatter lidar has great potential applications in the near range atmospheric detection. A new inversion method is proposed for CCD side-scatter lidar (Clidar) to retrieve aerosol phase function and vertical backscattering coefficient. Case studies show the retrieved results from Clidar are in good agreements with those obtained from other instruments. It indicates that the new proposed inversion method is reliable and feasible and that the Clidar is practicable.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
    [CrossRef] [PubMed]
  2. A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
    [CrossRef]
  3. D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
    [CrossRef]
  4. F. Mao, W. Gong, J. Li, “Geometrical form factor calculation using Monte Carlo integration for lidar,” Opt. Laser Technol. 44(4), 907–912 (2012).
    [CrossRef]
  5. J. E. Barnes, S. Bronner, R. Beck, N. C. Parikh, “Boundary layer scattering measurements with a charge-coupled device camera lidar,” Appl. Opt. 42(15), 2647–2652 (2003).
    [CrossRef] [PubMed]
  6. J. E. Barnes, N. C. Sharma, T. B. Kaplan, “Atmospheric aerosol profiling with a bistatic imaging lidar system,” Appl. Opt. 46(15), 2922–2929 (2007).
    [CrossRef] [PubMed]
  7. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [CrossRef] [PubMed]
  8. Z. Tao, D. Liu, C. Xie, X. Ma, X. Meng, S. Hu, and Y. Wang, “A numerical inversion method for CCD side-scatter lidar,” in Proceedings of International Conference on Remote Sensing, Environment and Transportation Engineering (Academic, 2013), pp. 250–252.
  9. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35(15), 2672–2686 (1996).
    [CrossRef] [PubMed]

2012 (1)

F. Mao, W. Gong, J. Li, “Geometrical form factor calculation using Monte Carlo integration for lidar,” Opt. Laser Technol. 44(4), 907–912 (2012).
[CrossRef]

2007 (1)

2003 (2)

J. E. Barnes, S. Bronner, R. Beck, N. C. Parikh, “Boundary layer scattering measurements with a charge-coupled device camera lidar,” Appl. Opt. 42(15), 2647–2652 (2003).
[CrossRef] [PubMed]

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

2000 (1)

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

1996 (1)

1992 (1)

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

1984 (1)

Althausen, D.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Ansmann, A.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Barnes, J. E.

Beck, R.

Boi, P.

Bronner, S.

Cess, R. D.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Charlson, R. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Coakley, J. A.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Fernald, F. G.

Franke, K.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Gong, W.

F. Mao, W. Gong, J. Li, “Geometrical form factor calculation using Monte Carlo integration for lidar,” Opt. Laser Technol. 44(4), 907–912 (2012).
[CrossRef]

Hales, J. M.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Hansen, J. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Heintzenberg, J.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Hofmann, D. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Holben, B.

Kaplan, T. B.

Kaufman, Y.

Li, J.

F. Mao, W. Gong, J. Li, “Geometrical form factor calculation using Monte Carlo integration for lidar,” Opt. Laser Technol. 44(4), 907–912 (2012).
[CrossRef]

Mao, F.

F. Mao, W. Gong, J. Li, “Geometrical form factor calculation using Monte Carlo integration for lidar,” Opt. Laser Technol. 44(4), 907–912 (2012).
[CrossRef]

McCormick, M. P.

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Miiller, D.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Nakajima, T.

Parikh, N. C.

Pelon, J.

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Rao, R.

Schwartz, S. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Sharma, N. C.

Tonna, G.

Wagner, F.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Wandinger, U.

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Winker, D. M.

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Appl. Opt. (4)

Geophys. Res. Lett. (1)

A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Miiller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27(7), 963–966 (2000).
[CrossRef]

Opt. Laser Technol. (1)

F. Mao, W. Gong, J. Li, “Geometrical form factor calculation using Monte Carlo integration for lidar,” Opt. Laser Technol. 44(4), 907–912 (2012).
[CrossRef]

Proc. SPIE (1)

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Science (1)

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255(5043), 423–430 (1992).
[CrossRef] [PubMed]

Other (1)

Z. Tao, D. Liu, C. Xie, X. Ma, X. Meng, S. Hu, and Y. Wang, “A numerical inversion method for CCD side-scatter lidar,” in Proceedings of International Conference on Remote Sensing, Environment and Transportation Engineering (Academic, 2013), pp. 250–252.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The measurement configuration of the Clidar.

Fig. 2
Fig. 2

Measurement by Clidar on Sep. 9, (a) raw signal (b) retrieved aerosol phase function

Fig. 3
Fig. 3

Measurement by Clidar on Sep. 16, (a) raw signal (b) retrieved aerosol phase function

Fig. 4
Fig. 4

Signal measured by Clidar on Oct. 15th, (a) the image of laser beam, (b) the signal profile versus pixel number and (c) the signal profile versus altitude

Fig. 5
Fig. 5

Retrieved profile of aerosol backscattering coefficient by vertical-pointing backscatter lidar, Clidar and backscatter lidar pointing horizontally. (a) measured at 19:40 LST, (b) measured at 20:40 LST

Fig. 6
Fig. 6

Aerosol backscattering coefficient profiles retrieved by combined lidars

Tables (1)

Tables Icon

Table 1 The key specifications of the Clidar system

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P(θ)= P 0 KA D β(θ) T z T r dθ
dz= R 2 D dθ
β(θ)=pf(θ) β s
β(θ)= β(π) pf(π) pf(θ)=f(θ)β(π)
P(θ)= P 0 KA D [ β 1 (π) f 1 (θ)+ β 2 (π) f 2 (θ)]exp{[ 0 z ( α 1 ( z )+ α 2 ( z )) d z + z z 0 ( α 1 ( z )+ α 2 ( z ))d z /cosθ]}dθ
P(θ)= P 0 KA D [ β 1 (π) f 1 (θ)+ β 2 (π) f 2 (θ)]exp{[ 0 z ( α 1 ( z )+ α 2 ( z )) d z + z 0 z ( α 1 ( z )+ α 2 ( z ))d z /cos(πθ) ]}dθ
P( θ c )= P 0 KA D [ β 1 (π) f 1 ( θ c )+ β 2 (π) f 2 ( θ c )]exp{[( α 1 + α 2 ) z c +( α 1 + α 2 )( z 0 z c )/cos θ c ]}d θ c
P( θ c )= P 0 KA D [ β 1 (π) f 1 ( θ c )+ β 2 (π) f 2 ( θ c )]exp{[( α 1 + α 2 ) z c +( α 1 + α 2 )( z c z 0 )/cos(π θ c )]}d θ c
C= P( θ c ) [ β 1 (π) f 1 ( θ c )+ β 2 (π) f 2 ( θ c )]d θ c
β (θ)= P(θ) C
β (θ)=[ β 1 (π) f 1 (θ)+ β 2 (π) f 2 (θ)]exp{[( α 1 + α 2 )(z z c ) +( α 1 + α 2 )(( z 0 z)/cosθ( z 0 z c )/cos θ c )]}dθ
β (θ)=[ β 1 (π) f 1 (θ)+ β 2 (π) f 2 (θ)]exp{[( α 1 + α 2 )(z z c ) +( α 1 + α 2 )((z z 0 )/cos(πθ)( z c z 0 )/cos(π θ c ))]}dθ

Metrics