Abstract

The optical transmissions through compound gold surface relief slit arrays were investigated theoretically by using the finite difference time domain method. The differences of transmission, reflection, and absorption spectra of the bare slit and the surface relief grating are discussed. The transmission spectra influenced by different dielectric constants of medium in the two slits and different slits widths. When the two slits fill different dielectrics, the presence of the medium induces a red-shift of the plasmon resonances. Along with the dielectric constant in one slit increasing, there appear obvious dips in the transmission spectra. Based on the magnetic and electric field distributions, Fabry–Pérot–like resonance and phase resonance mechanisms have been suggested for the physical origins of these observations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. F. Miyamaru, M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
    [CrossRef]
  3. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
    [CrossRef] [PubMed]
  4. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
    [CrossRef]
  5. X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).
  6. X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
    [CrossRef]
  7. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31(4), 516–518 (2006).
    [CrossRef] [PubMed]
  8. S. X. Xie, H. J. Li, X. Zhou, H. Q. Xu, Z. M. Liu, “Tunable optical transmission through gold slit arrays with Z-shaped channels,” J. Opt. Soc. Am. A 28(3), 441–447 (2011).
    [CrossRef] [PubMed]
  9. Z. C. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  10. Y. Liang, W. Peng, R. Hu, H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
    [CrossRef] [PubMed]
  11. J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
    [CrossRef] [PubMed]
  12. Z. Liu, H. Li, S. Xie, H. Xu, S. Fu, X. Zhou, C. Wu, “Tunable phase resonances in a compound metallic grating with perpendicular bumps and cuts,” Opt. Express 19(5), 4217–4222 (2011).
    [CrossRef] [PubMed]
  13. X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, D. Y. Fan, “Adjustable phase resonances in a compound metallic grating with perpendicular cuts,” Opt. Express 18(7), 6871–6876 (2010).
    [CrossRef] [PubMed]
  14. D. Xiang, L. L. Wang, X. F. Li, L. Wang, X. Zhai, Z. H. Liu, W. W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011).
    [CrossRef] [PubMed]
  15. H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
    [CrossRef]
  16. M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
    [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, 2nd ed. (Artech House, 2000).
  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
    [CrossRef]
  19. X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).
  20. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).
  21. Y. Wang, Y. Wang, Y. Zhang, S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009).
    [CrossRef] [PubMed]
  22. A. P. Hibbins, M. J. Lockyear, J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
    [CrossRef]
  23. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
    [CrossRef]
  24. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  25. E. Prodan, A. Lee, P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3–4), 325–332 (2002).
    [CrossRef]

2013

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

Y. Liang, W. Peng, R. Hu, H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
[CrossRef] [PubMed]

2012

X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

2011

2010

2009

H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Y. Wang, Y. Wang, Y. Zhang, S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009).
[CrossRef] [PubMed]

2006

H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31(4), 516–518 (2006).
[CrossRef] [PubMed]

A. P. Hibbins, M. J. Lockyear, J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Z. C. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

2005

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

F. Miyamaru, M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

2003

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

2002

E. Prodan, A. Lee, P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3–4), 325–332 (2002).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1966

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[CrossRef]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Beruete, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Bower, J. E.

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Carr, D. W.

Chan, H. B.

Chavel, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

Chen, L.

Cirelli, R. A.

de Dood, M. J. A.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Dong, X.

Du, C.

Ebbesen, T. W.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, D. Y.

Fang, J. S.

X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).

Fang, J.-S.

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

Ferry, E.

Fu, S.

Gao, H.

Geluk, E. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Hamilton, O. K.

H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

Hangyo, M.

F. Miyamaru, M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

He, M. D.

Hibbins, A. P.

H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Hu, R.

Hugonin, J. P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Klemens, F.

Lalanne, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

Lee, A.

E. Prodan, A. Lee, P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3–4), 325–332 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, H.

Li, H. J.

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

S. X. Xie, H. J. Li, X. Zhou, H. Q. Xu, Z. M. Liu, “Tunable optical transmission through gold slit arrays with Z-shaped channels,” J. Opt. Soc. Am. A 28(3), 441–447 (2011).
[CrossRef] [PubMed]

Li, X. F.

Liang, Y.

Liao, X.P.

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

Liu, J. Q.

Liu, S.

Liu, Z.

Liu, Z. H.

Liu, Z. M.

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).

S. X. Xie, H. J. Li, X. Zhou, H. Q. Xu, Z. M. Liu, “Tunable optical transmission through gold slit arrays with Z-shaped channels,” J. Opt. Soc. Am. A 28(3), 441–447 (2011).
[CrossRef] [PubMed]

Liu, Z.M.

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Luo, X.

Marcet, Z.

Miner, J.

Miyamaru, F.

F. Miyamaru, M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

Navarro-Cia, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Nordlander, P.

E. Prodan, A. Lee, P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3–4), 325–332 (2002).
[CrossRef]

Pai, C. S.

Peng, W.

Peng, X.

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

Prodan, E.

E. Prodan, A. Lee, P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3–4), 325–332 (2002).
[CrossRef]

Qiu, M.

Z. C. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Rance, H. J.

H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

Rodier, J. C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

Ruan, Z. C.

Z. C. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Sambles, J. R.

H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

Sauvan, C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

Shao, Z.

Shi, H.

Skigin, D. C.

M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Sorolla, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

't Hooft, G. W.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

Tang, B.

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).

Tanner, D. B.

Taylor, J. A.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van Beijnum, F.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

van Exter, M. P.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

van Veldhoven, P. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

Wan, Q.

Wang, C.

Wang, L.

Wang, L. L.

Wang, Y.

Wen, S.

Wen, S. C.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Woo, K.

Wu, C.

Xiang, D.

Xie, S.

Xie, S. X.

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

S. X. Xie, H. J. Li, X. Zhou, H. Q. Xu, Z. M. Liu, “Tunable optical transmission through gold slit arrays with Z-shaped channels,” J. Opt. Soc. Am. A 28(3), 441–447 (2011).
[CrossRef] [PubMed]

Xu, H.

Xu, H. Q.

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

S. X. Xie, H. J. Li, X. Zhou, H. Q. Xu, Z. M. Liu, “Tunable optical transmission through gold slit arrays with Z-shaped channels,” J. Opt. Soc. Am. A 28(3), 441–447 (2011).
[CrossRef] [PubMed]

Yao, J.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[CrossRef]

Zhai, X.

Zhang, Y.

Zhao, W. W.

Zhou, X.

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).

Z. Liu, H. Li, S. Xie, H. Xu, S. Fu, X. Zhou, C. Wu, “Tunable phase resonances in a compound metallic grating with perpendicular bumps and cuts,” Opt. Express 19(5), 4217–4222 (2011).
[CrossRef] [PubMed]

S. X. Xie, H. J. Li, X. Zhou, H. Q. Xu, Z. M. Liu, “Tunable optical transmission through gold slit arrays with Z-shaped channels,” J. Opt. Soc. Am. A 28(3), 441–447 (2011).
[CrossRef] [PubMed]

Zou, B. S.

Zou, H.

Appl. Phys. Lett.

H. J. Rance, O. K. Hamilton, J. R. Sambles, A. P. Hibbins, “Phase resonances on metal gratings of identical, equally spaced alternately tapered slits,” Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

M. Navarro-Cia, D. C. Skigin, M. Beruete, M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Chem. Phys. Lett.

E. Prodan, A. Lee, P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3–4), 325–332 (2002).
[CrossRef]

IEEE Trans. Antennas Propag.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys.

A. P. Hibbins, M. J. Lockyear, J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99(12), 124903 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Mod. Phys. Lett. B

X. Zhou, J.-S. Fang, X.P. Liao, B. Tang, Z.M. Liu, “Investigation of optical transmission through a gold grating with semicircle bumps using FDTD method,” Mod. Phys. Lett. B 27(17), 1350126 (2013).

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

X. Zhou, J. S. Fang, B. Tang, Z. M. Liu, “Surface plasmon interactions between the grating with slanted sidewall and a metallic film,” Opt. Commun. 293(15), 149–154 (2012).

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[CrossRef]

F. Miyamaru, M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Phys. Rev. Lett.

Z. C. Ruan, M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. 't Hooft, M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110(20), 206802 (2013).
[CrossRef] [PubMed]

Solid State Commun.

X. Zhou, H. J. Li, Z. M. Liu, S. X. Xie, H. Q. Xu, X. Peng, “Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays,” Solid State Commun. 152(5), 417–421 (2012).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, 2nd ed. (Artech House, 2000).

E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of a unit cell of the compound gold surface relief grating defined for FDTD simulations. Parameters are defined in the text.

Fig. 2
Fig. 2

Transmission, reflection, and absorption spectra of the(a)bare slit without surface relief channels and (b) surface relief slit arrays.

Fig. 3
Fig. 3

The transmission spectra as a function of wavelength for compound gold surface relief slit arrays with different dielectric constant of (a) ε 2 = 2, (b) ε 2 = 3, (c) ε 2 = 4 and (d) ε 2 = 4.5. The medium in the surface relief slit1 is defined as air (ε1 = 1). The widths of slit1 and slit2 are d 1 = d 2 =300nm .

Fig. 4
Fig. 4

The magnitude of magnetic field | H | and the electric field component E x , E y distributions at three resonant wavelengths shown by arrows in Fig. 3. The resonant wavelengths are (a-c) λ=1.317μm in Fig. 3(b), (d-f) λ=2.104μm in Fig. 3 (b) and (g-i) λ=2.067μm in Fig. 3(d), respectively.

Fig. 5
Fig. 5

Variation of the real and imaginary parts of n eff with wavelength for coupled-SPPs inside the slit filled with different dielectric ε d =1,2,3,4,4.5 , respectively.

Fig. 6
Fig. 6

The transmission spectra as a function of wavelength for compound gold surface relief slit arrays with different widths of slit2 of (a) d 2 =200nm , (b) d 2 =240nm , (c) d 2 =300nm and (d) d 2 =340nm . The slit1 width and the dielectric constant in two slits are set to be d 1 =300nm and ε 1 = ε 2 =1 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )=1 ω p 2 ω 2 +iω γ p
k 0 Re( n eff )l+arg(ρ)=nπ
d 2 =340nm
k= k 0 ( β spp k 0 ) 2 - ε d ; p= k 0 ( β spp k 0 ) 2 - ε m
β spp = n eff k 0 = n eff 2π λ .

Metrics