Abstract

Grating couplers are used to efficiently couple light from an optical fibre to a silicon waveguide as they allow light to be coupled into or out from any location on the device without the need for cleaving. However, using the typical surface relief grating fabrication method reduces surface planarity and hence makes further processing more difficult. The ability to manufacture high quality material layers on top of a grating coupler allows multiple active optical layers to be realized for multi-layer integrated optical circuits, and may enable monolithic integration of optical and electronic circuits on separate layers. Furthermore, the nature of the refractive index change may enable removal via rapid thermal annealing for wafer scale testing applications. We demonstrate for the first time a coupling device utilising a refractive index change introduced by lattice disorder. Simulations show 44% of the power can be extracted from the waveguide by using uniform implanted gratings, which is not dissimilar to the performance of typical uniform surface relief gratings currently used. Losses determined empirically, of 5.5dB per coupler have been demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, 2004).
  2. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
    [Crossref]
  3. C. Kopp and A. Chelnokov, “Fiber grating couplers for silicon nanophotonic circuits: Design modeling methodology and fabrication tolerances,” Opt. Commun. 282(21), 4242–4248 (2009).
    [Crossref]
  4. J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 2008).
  5. T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. H. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Opt. Lett. 38(20), 4030–4032 (2013).
    [Crossref]
  6. D. J. Eaglesham and M. Cerullo, “Low‐temperature growth of Ge on Si(100),” Appl. Phys. Lett. 58(20), 2276–2278 (1991).
    [Crossref]
  7. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
    [Crossref]
  8. G. Liu and S. J. Fonash, “Selective area crystallization of amorphous silicon films by low‐temperature rapid thermal annealing,” Appl. Phys. Lett. 55(7), 660–662 (1989).
    [Crossref]
  9. S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
    [Crossref]
  10. D. J. Eaglesham, H. J. Gossmann, and M. Cerullo, “Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100),” Phys. Rev. Lett. 65(10), 1227–1230 (1990).
    [Crossref] [PubMed]
  11. P. M. Waugh, “First order Bragg grating filters in silicon on insulator waveguides,” Proc. SPIE 7056, 70561T (2008).
    [Crossref]
  12. M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
    [Crossref]
  13. S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
    [Crossref]
  14. T. Tamir and S. Peng, “Analysis and design of grating couplers,” Appl. Phys. A Mater. Sci. Process. 14(3), 235–254 (1977).
    [Crossref]
  15. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  16. Lumerical, “FDTD Solutions | Lumerical’s Nanophotonic FDTD Simulation Software” (Lumerical, 2013), https://www.lumerical.com/tcad-products/fdtd/ .
  17. K. F. Heidemann, “Complex-refractive-index profiles of 4 MeV Ge ion-irradiation damage in silicon,” Philos. Mag. B 44(4), 465–485 (1981).
    [Crossref]
  18. R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
    [Crossref]
  19. N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7(12), 1394–1396 (1995).
    [Crossref]
  20. X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  21. E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
    [Crossref]
  22. L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion for amorphization of silicon during ion implantation,” J. Appl. Phys. 52(12), 7143–7146 (1981).
    [Crossref]
  23. H. Cerva and G. Hobler, “Comparison of transmission electron microscope cross sections of amorphous regions in ion implanted silicon with point‐defect density calculations,” J. Electrochem. Soc. 139(12), 3631–3638 (1992).
    [Crossref]
  24. J. R. Dennis and E. B. Hale, “Crystalline to amorphous transformation in ion-implanted silicon: a composite model,” J. Appl. Phys. 49(3), 1119–1127 (1978).
    [Crossref]
  25. G. Hobler and G. Otto, “Status and open problems in modeling of as-implanted damage in silicon,” Mater. Sci. Semicond. Process. 6(1–3), 1–14 (2003).
    [Crossref]
  26. O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
    [Crossref]
  27. G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
    [Crossref]
  28. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
    [Crossref] [PubMed]
  29. R. Loiacono, R. Topley, A. Nakyobe, G. Mashanovich, R. Gwilliam, G. Lulli, R. Feldesh, R. Jones, and G. Reed, “Very low energy implanted Bragg gratings in SOI for wafer scale testing applications,” in 2011 8th IEEE International Conference on Group IV Photonics (GFP) (2011), pp. 51–53.
    [Crossref]
  30. R. Loiacono, “Erasable Bragg gratings in silicon on insulator,” Ph.D thesis (University of Surrey, 2010).
  31. G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
    [Crossref]
  32. G. F. Cembali, P. G. Merli, and F. Zignani, “Self-annealing of ion-implanted silicon: First experimental results,” Appl. Phys. Lett. 38(10), 808–810 (1981).
    [Crossref]
  33. J.A. Woollam Co, Inc.,”Spectroscopic Ellipsometer Software – CompleteEASE,” http://www.jawoollam.com/completeease.html , 2013.
  34. A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
    [Crossref]
  35. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Lasers and Electro-Optics, CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.

2013 (1)

2011 (2)

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

2010 (1)

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

2009 (2)

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
[Crossref]

C. Kopp and A. Chelnokov, “Fiber grating couplers for silicon nanophotonic circuits: Design modeling methodology and fabrication tolerances,” Opt. Commun. 282(21), 4242–4248 (2009).
[Crossref]

2008 (3)

P. M. Waugh, “First order Bragg grating filters in silicon on insulator waveguides,” Proc. SPIE 7056, 70561T (2008).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
[Crossref]

2007 (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

2004 (2)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
[Crossref]

2003 (1)

G. Hobler and G. Otto, “Status and open problems in modeling of as-implanted damage in silicon,” Mater. Sci. Semicond. Process. 6(1–3), 1–14 (2003).
[Crossref]

1997 (1)

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

1995 (1)

N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7(12), 1394–1396 (1995).
[Crossref]

1992 (2)

H. Cerva and G. Hobler, “Comparison of transmission electron microscope cross sections of amorphous regions in ion implanted silicon with point‐defect density calculations,” J. Electrochem. Soc. 139(12), 3631–3638 (1992).
[Crossref]

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

1991 (1)

D. J. Eaglesham and M. Cerullo, “Low‐temperature growth of Ge on Si(100),” Appl. Phys. Lett. 58(20), 2276–2278 (1991).
[Crossref]

1990 (2)

D. J. Eaglesham, H. J. Gossmann, and M. Cerullo, “Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100),” Phys. Rev. Lett. 65(10), 1227–1230 (1990).
[Crossref] [PubMed]

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

1989 (1)

G. Liu and S. J. Fonash, “Selective area crystallization of amorphous silicon films by low‐temperature rapid thermal annealing,” Appl. Phys. Lett. 55(7), 660–662 (1989).
[Crossref]

1986 (1)

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

1981 (3)

K. F. Heidemann, “Complex-refractive-index profiles of 4 MeV Ge ion-irradiation damage in silicon,” Philos. Mag. B 44(4), 465–485 (1981).
[Crossref]

G. F. Cembali, P. G. Merli, and F. Zignani, “Self-annealing of ion-implanted silicon: First experimental results,” Appl. Phys. Lett. 38(10), 808–810 (1981).
[Crossref]

L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion for amorphization of silicon during ion implantation,” J. Appl. Phys. 52(12), 7143–7146 (1981).
[Crossref]

1978 (1)

J. R. Dennis and E. B. Hale, “Crystalline to amorphous transformation in ion-implanted silicon: a composite model,” J. Appl. Phys. 49(3), 1119–1127 (1978).
[Crossref]

1977 (1)

T. Tamir and S. Peng, “Analysis and design of grating couplers,” Appl. Phys. A Mater. Sci. Process. 14(3), 235–254 (1977).
[Crossref]

1973 (1)

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Albertazzi, E.

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Andersson, G. I.

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

Andersson, M. O.

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Baranova, E.

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Bengtsson, S.

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

Bianconi, M.

G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
[Crossref]

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Bienstman, P.

Bogaerts, W.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Bulk, M. P.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Carnera, A.

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Cellini, C.

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Cembali, G. F.

G. F. Cembali, P. G. Merli, and F. Zignani, “Self-annealing of ion-implanted silicon: First experimental results,” Appl. Phys. Lett. 38(10), 808–810 (1981).
[Crossref]

Cerullo, M.

D. J. Eaglesham and M. Cerullo, “Low‐temperature growth of Ge on Si(100),” Appl. Phys. Lett. 58(20), 2276–2278 (1991).
[Crossref]

D. J. Eaglesham, H. J. Gossmann, and M. Cerullo, “Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100),” Phys. Rev. Lett. 65(10), 1227–1230 (1990).
[Crossref] [PubMed]

Cerva, H.

H. Cerva and G. Hobler, “Comparison of transmission electron microscope cross sections of amorphous regions in ion implanted silicon with point‐defect density calculations,” J. Electrochem. Soc. 139(12), 3631–3638 (1992).
[Crossref]

Cervera, M.

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Chelnokov, A.

C. Kopp and A. Chelnokov, “Fiber grating couplers for silicon nanophotonic circuits: Design modeling methodology and fabrication tolerances,” Opt. Commun. 282(21), 4242–4248 (2009).
[Crossref]

Chen, X.

T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. H. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Opt. Lett. 38(20), 4030–4032 (2013).
[Crossref]

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Chong, H. M. H.

Christel, L. A.

L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion for amorphization of silicon during ion implantation,” J. Appl. Phys. 52(12), 7143–7146 (1981).
[Crossref]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Coleman, P. G.

A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
[Crossref]

Dennis, J. R.

J. R. Dennis and E. B. Hale, “Crystalline to amorphous transformation in ion-implanted silicon: a composite model,” J. Appl. Phys. 49(3), 1119–1127 (1978).
[Crossref]

Dudeck, K. J.

A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
[Crossref]

Eaglesham, D. J.

D. J. Eaglesham and M. Cerullo, “Low‐temperature growth of Ge on Si(100),” Appl. Phys. Lett. 58(20), 2276–2278 (1991).
[Crossref]

D. J. Eaglesham, H. J. Gossmann, and M. Cerullo, “Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100),” Phys. Rev. Lett. 65(10), 1227–1230 (1990).
[Crossref] [PubMed]

Engström, O.

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

Eriksson, N.

N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7(12), 1394–1396 (1995).
[Crossref]

Feldesh, R.

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

Fonash, S. J.

G. Liu and S. J. Fonash, “Selective area crystallization of amorphous silicon films by low‐temperature rapid thermal annealing,” Appl. Phys. Lett. 55(7), 660–662 (1989).
[Crossref]

Fung, C. K.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Gibbons, J. F.

L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion for amorphization of silicon during ion implantation,” J. Appl. Phys. 52(12), 7143–7146 (1981).
[Crossref]

Gossmann, H. J.

D. J. Eaglesham, H. J. Gossmann, and M. Cerullo, “Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100),” Phys. Rev. Lett. 65(10), 1227–1230 (1990).
[Crossref] [PubMed]

Gusev, V.

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Gwilliam, R.

Gwilliam, R. M.

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Hagberg, M.

N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7(12), 1394–1396 (1995).
[Crossref]

Haibullin, I.

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Hale, E. B.

J. R. Dennis and E. B. Hale, “Crystalline to amorphous transformation in ion-implanted silicon: a composite model,” J. Appl. Phys. 49(3), 1119–1127 (1978).
[Crossref]

Hardy, A.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

Heidemann, K. F.

K. F. Heidemann, “Complex-refractive-index profiles of 4 MeV Ge ion-irradiation damage in silicon,” Philos. Mag. B 44(4), 465–485 (1981).
[Crossref]

Henley, S. J.

Hobler, G.

G. Hobler and G. Otto, “Status and open problems in modeling of as-implanted damage in silicon,” Mater. Sci. Semicond. Process. 6(1–3), 1–14 (2003).
[Crossref]

H. Cerva and G. Hobler, “Comparison of transmission electron microscope cross sections of amorphous regions in ion implanted silicon with point‐defect density calculations,” J. Electrochem. Soc. 139(12), 3631–3638 (1992).
[Crossref]

Homampour, S.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
[Crossref]

Hu, Y.

Jaberansary, E.

Jauhiainen, A.

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

Jessop, P. E.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Jones, R.

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

Karasawa, S.

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

Knights, A. P.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
[Crossref]

Konagai, M.

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

Kopp, C.

C. Kopp and A. Chelnokov, “Fiber grating couplers for silicon nanophotonic circuits: Design modeling methodology and fabrication tolerances,” Opt. Commun. 282(21), 4242–4248 (2009).
[Crossref]

Larsson, A.

N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7(12), 1394–1396 (1995).
[Crossref]

Li, C.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Liu, G.

G. Liu and S. J. Fonash, “Selective area crystallization of amorphous silicon films by low‐temperature rapid thermal annealing,” Appl. Phys. Lett. 55(7), 660–662 (1989).
[Crossref]

Lo, S. M.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Loiacono, R.

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Lulli, G.

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
[Crossref]

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Martynenko, W.

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Masaud, T. M. B.

Mashanovich, G. Z.

T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. H. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Opt. Lett. 38(20), 4030–4032 (2013).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Merli, P. G.

G. F. Cembali, P. G. Merli, and F. Zignani, “Self-annealing of ion-implanted silicon: First experimental results,” Appl. Phys. Lett. 38(10), 808–810 (1981).
[Crossref]

Napolitani, E.

G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
[Crossref]

Nipoti, R.

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

Nishida, S.

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

O'Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Otto, G.

G. Hobler and G. Otto, “Status and open problems in modeling of as-implanted damage in silicon,” Mater. Sci. Semicond. Process. 6(1–3), 1–14 (2003).
[Crossref]

Parisini, A.

G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
[Crossref]

Parke, R.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

Peng, S.

T. Tamir and S. Peng, “Analysis and design of grating couplers,” Appl. Phys. A Mater. Sci. Process. 14(3), 235–254 (1977).
[Crossref]

Reed, G. T.

T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. H. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Opt. Lett. 38(20), 4030–4032 (2013).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Shiimoto, T.

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

Sigmon, T. W.

L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion for amorphization of silicon during ion implantation,” J. Appl. Phys. 52(12), 7143–7146 (1981).
[Crossref]

Starinin, C.

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Streifer, W.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Takahashi, K.

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

Tamir, T.

T. Tamir and S. Peng, “Analysis and design of grating couplers,” Appl. Phys. A Mater. Sci. Process. 14(3), 235–254 (1977).
[Crossref]

Tarazona, A.

Tsang, H. K.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Van Thourhout, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Waarts, R.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

Walters, W. D.

A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
[Crossref]

Waugh, P.

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Waugh, P. M.

P. M. Waugh, “First order Bragg grating filters in silicon on insulator waveguides,” Proc. SPIE 7056, 70561T (2008).
[Crossref]

Welch, D. F.

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

Yamada, A.

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

Zignani, F.

G. F. Cembali, P. G. Merli, and F. Zignani, “Self-annealing of ion-implanted silicon: First experimental results,” Appl. Phys. Lett. 38(10), 808–810 (1981).
[Crossref]

Adv. Opt. Technol. (1)

M. P. Bulk, A. P. Knights, P. E. Jessop, P. Waugh, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Gwilliam, “Optical filters utilizing ion implanted Bragg gratings in SOI waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
[Crossref]

Appl. Phys. A Mater. Sci. Process. (1)

T. Tamir and S. Peng, “Analysis and design of grating couplers,” Appl. Phys. A Mater. Sci. Process. 14(3), 235–254 (1977).
[Crossref]

Appl. Phys. Lett. (4)

G. F. Cembali, P. G. Merli, and F. Zignani, “Self-annealing of ion-implanted silicon: First experimental results,” Appl. Phys. Lett. 38(10), 808–810 (1981).
[Crossref]

D. J. Eaglesham and M. Cerullo, “Low‐temperature growth of Ge on Si(100),” Appl. Phys. Lett. 58(20), 2276–2278 (1991).
[Crossref]

G. Liu and S. J. Fonash, “Selective area crystallization of amorphous silicon films by low‐temperature rapid thermal annealing,” Appl. Phys. Lett. 55(7), 660–662 (1989).
[Crossref]

S. Nishida, T. Shiimoto, A. Yamada, S. Karasawa, M. Konagai, and K. Takahashi, “Epitaxial growth of silicon by photochemical vapor deposition at a very low temperature of 200 °C,” Appl. Phys. Lett. 49(2), 79–81 (1986).
[Crossref]

Appl. Surf. Sci. (1)

A. P. Knights, K. J. Dudeck, W. D. Walters, and P. G. Coleman, “Modification of silicon waveguide structures using ion implantation induced defects,” Appl. Surf. Sci. 255(1), 75–77 (2008).
[Crossref]

Electron. Lett. (1)

R. Parke, R. Waarts, D. F. Welch, A. Hardy, and W. Streifer, “High efficiency, high uniformity, grating coupled surface emitting lasers,” Electron. Lett. 26(2), 125–127 (1990).
[Crossref]

IEEE Photonics Technol. Lett. (3)

N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photonics Technol. Lett. 7(12), 1394–1396 (1995).
[Crossref]

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

J. Appl. Phys. (4)

G. Lulli, M. Bianconi, A. Parisini, and E. Napolitani, “Structural characterization and modeling of damage accumulation in In implanted Si,” J. Appl. Phys. 95(1), 150–155 (2004).
[Crossref]

L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion for amorphization of silicon during ion implantation,” J. Appl. Phys. 52(12), 7143–7146 (1981).
[Crossref]

J. R. Dennis and E. B. Hale, “Crystalline to amorphous transformation in ion-implanted silicon: a composite model,” J. Appl. Phys. 49(3), 1119–1127 (1978).
[Crossref]

G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, and C. Cellini, “Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si,” J. Appl. Phys. 82(12), 5958–5964 (1997).
[Crossref]

J. Electrochem. Soc. (2)

O. Engström, S. Bengtsson, G. I. Andersson, M. O. Andersson, and A. Jauhiainen, “Electrical characterization of bonding interfaces,” J. Electrochem. Soc. 139(12), 3638–3644 (1992).
[Crossref]

H. Cerva and G. Hobler, “Comparison of transmission electron microscope cross sections of amorphous regions in ion implanted silicon with point‐defect density calculations,” J. Electrochem. Soc. 139(12), 3631–3638 (1992).
[Crossref]

Mater. Sci. Semicond. Process. (1)

G. Hobler and G. Otto, “Status and open problems in modeling of as-implanted damage in silicon,” Mater. Sci. Semicond. Process. 6(1–3), 1–14 (2003).
[Crossref]

Opt. Commun. (1)

C. Kopp and A. Chelnokov, “Fiber grating couplers for silicon nanophotonic circuits: Design modeling methodology and fabrication tolerances,” Opt. Commun. 282(21), 4242–4248 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Philos. Mag. B (1)

K. F. Heidemann, “Complex-refractive-index profiles of 4 MeV Ge ion-irradiation damage in silicon,” Philos. Mag. B 44(4), 465–485 (1981).
[Crossref]

Phys. Rev. Lett. (1)

D. J. Eaglesham, H. J. Gossmann, and M. Cerullo, “Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100),” Phys. Rev. Lett. 65(10), 1227–1230 (1990).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6(S1), S240–S243 (2009).
[Crossref]

Proc. SPIE (2)

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. M. Gwilliam, G. Lulli, R. Feldesh, and R. Jones, “Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing,” Proc. SPIE 7943, 794310 (2011).
[Crossref]

P. M. Waugh, “First order Bragg grating filters in silicon on insulator waveguides,” Proc. SPIE 7056, 70561T (2008).
[Crossref]

Radiat. Eff. (1)

E. Baranova, V. Gusev, W. Martynenko, C. Starinin, and I. Haibullin, “On silicon amorphization during different mass ion implantation,” Radiat. Eff. 18(1-2), 21–26 (1973).
[Crossref]

Other (7)

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, 2004).

J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 2008).

Lumerical, “FDTD Solutions | Lumerical’s Nanophotonic FDTD Simulation Software” (Lumerical, 2013), https://www.lumerical.com/tcad-products/fdtd/ .

R. Loiacono, R. Topley, A. Nakyobe, G. Mashanovich, R. Gwilliam, G. Lulli, R. Feldesh, R. Jones, and G. Reed, “Very low energy implanted Bragg gratings in SOI for wafer scale testing applications,” in 2011 8th IEEE International Conference on Group IV Photonics (GFP) (2011), pp. 51–53.
[Crossref]

R. Loiacono, “Erasable Bragg gratings in silicon on insulator,” Ph.D thesis (University of Surrey, 2010).

S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Lasers and Electro-Optics, CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.

J.A. Woollam Co, Inc.,”Spectroscopic Ellipsometer Software – CompleteEASE,” http://www.jawoollam.com/completeease.html , 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

2D Simulated implanted grating coupler structure.

Fig. 2
Fig. 2

Contour map of efficiency for various implant depths vs grating period for a 0.5 duty cycle, Ge implanted uniform grating coupler on 220nm SOI with a 2μm buried oxide.

Fig. 3
Fig. 3

Amorphization profile for 100 keV energy, 1x1015 ions cm−2, implanted through a 300nm slit. Dotted lines represent the width of the mask used.

Fig. 4
Fig. 4

Device fabrication process: 1. Waveguide etch, 2. Resist spin, 3. Pattern and develop resist, 4. Introduction of lattice disorder, 5. Resist removal.

Fig. 5
Fig. 5

Performance of implanted grating couplers at different central wavelengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η out = P Out P In .

Metrics