Abstract

An optical fiber with nano-electromechanical functionality is presented. The fiber exhibits a suspended dual-core structure that allows for control of the optical properties via nanometer-range mechanical movements. We investigate electrostatic actuation achieved by applying a voltage to specially designed electrodes integrated in the cladding. Numerical and analytical calculations are preformed to optimize the fiber and electrode design. Based on this geometry an all-fiber optical switch is investigated; we find that optical switching of light between the two cores can be achieved in a 10 cm fiber with an operating voltage of 35 V.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
    [CrossRef] [PubMed]
  2. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
    [CrossRef]
  3. M. C. Wu, O. Solgaard, J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [CrossRef]
  4. V. T. Srikar, S. M. Spearing, “Material selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003).
    [CrossRef]
  5. R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
    [CrossRef]
  6. F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
    [CrossRef] [PubMed]
  7. B. Lenssen, Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101(10), 103503 (2012).
    [CrossRef]
  8. Z. G. Lian, X. Feng, P. Horak, L. Xiao, Y. Jeong, N. White, K. Frampton, J. A. Tucknott, H. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, “Optical fiber with dual suspended submicron-cores,” European Conference on Optical Communications (ECOC) 2011, 18–22 Sep. 2011, Geneva, Switzerland, paper Mo.2.LeCervin.1.
  9. Z. Lian, P. Horak, X. Feng, L. Xiao, K. Frampton, N. White, J. A. Tucknott, H. Rutt, D. N. Payne, W. Stewart, W. H. Loh, “Nanomechanical optical fiber,” Opt. Express 20(28), 29386–29394 (2012).
    [CrossRef] [PubMed]
  10. A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
    [CrossRef] [PubMed]
  11. A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
    [CrossRef] [PubMed]
  12. Y. Akihama, K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
    [CrossRef]
  13. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
    [CrossRef]
  14. V. Kaajakari, Practical MEMS (Small Gear Publishing, 2009).
  15. M. C. Lee, M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
    [CrossRef] [PubMed]
  16. T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Eng. Med. Biol. Mag. 22(6), 33–42 (2003).
    [CrossRef] [PubMed]
  17. T. B. Jones, Electromechanics of Particles (Cambridge University Press, 1995).
  18. J. David, Griffiths, Introduction to Electrodynamics, 3rd edition (Prentice-Hall, 1999).
  19. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
    [CrossRef] [PubMed]
  20. M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
    [CrossRef] [PubMed]
  21. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
    [CrossRef] [PubMed]
  22. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [CrossRef] [PubMed]
  23. K. Okamoto, Fundamentals of Optical Waveguides, 2nd edition (Elsevier/Academic Press, 2006).
  24. P. Horak, W. Stewart, W. H. Loh, “Continuously tunable optical buffer with a dual silicon waveguide design,” Opt. Express 19(13), 12456–12461 (2011).
    [CrossRef] [PubMed]

2012 (5)

B. Lenssen, Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101(10), 103503 (2012).
[CrossRef]

Z. Lian, P. Horak, X. Feng, L. Xiao, K. Frampton, N. White, J. A. Tucknott, H. Rutt, D. N. Payne, W. Stewart, W. H. Loh, “Nanomechanical optical fiber,” Opt. Express 20(28), 29386–29394 (2012).
[CrossRef] [PubMed]

A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Y. Akihama, K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[CrossRef]

2011 (1)

2009 (1)

2007 (1)

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

2006 (3)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

M. C. Lee, M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
[CrossRef] [PubMed]

M. C. Wu, O. Solgaard, J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
[CrossRef]

2005 (1)

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

2004 (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

2003 (3)

T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Eng. Med. Biol. Mag. 22(6), 33–42 (2003).
[CrossRef] [PubMed]

V. T. Srikar, S. M. Spearing, “Material selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003).
[CrossRef]

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

2002 (1)

2000 (1)

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

1998 (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Abouraddy, A. F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Akihama, Y.

Y. Akihama, K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[CrossRef]

Amarnath, K.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Bellouard, Y.

B. Lenssen, Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101(10), 103503 (2012).
[CrossRef]

Berlemont, D.

Biancalana, F.

A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Bleuler, H.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

Butsch, A.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Carvalho, I. C. S.

Chesini, G.

Claesson, Å.

Conti, C.

A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Cordeiro, C. M. B.

Craighead, H. G.

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Datta, M.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

de Matos, C. J. S.

Douglass, M. R.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Dudle, G.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

Euser, T. G.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Feng, X.

Fink, Y.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Fokine, M.

Ford, J. E.

Frampton, K.

Füzesi, F.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

Ghodssi, R.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Hane, K.

Y. Akihama, K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[CrossRef]

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Higuchi, T.

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

Ho, P.-T.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Horak, P.

Hornbeck, L. J.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Jones, T. B.

T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Eng. Med. Biol. Mag. 22(6), 33–42 (2003).
[CrossRef] [PubMed]

Jornod, A.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

Kanakaraju, S.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Kang, M. S.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Keding, R.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Kelly, D. P.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Kjellberg, L.

Knight, J. C.

Koehler, J. R.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Krummenacher, L.

Lee, M. C.

Lenssen, B.

B. Lenssen, Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101(10), 103503 (2012).
[CrossRef]

Lian, Z.

Loh, W. H.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Margulis, W.

Meier, R. E.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Moser, R.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

Nilsson, L. E.

Payne, D. N.

Plimmer, M. D.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

Pruessner, M. W.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Rammler, S.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Russell, P. St. J.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

Rutt, H.

Sache, L.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Solgaard, O.

Sorin, F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Spearing, S. M.

V. T. Srikar, S. M. Spearing, “Material selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003).
[CrossRef]

Srikar, V. T.

V. T. Srikar, S. M. Spearing, “Material selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003).
[CrossRef]

Stewart, W.

Thomann, P.

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

Tucknott, J. A.

Van Kessel, P. F.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

White, N.

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Wu, M. C.

Wüthrich, R.

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

Xiao, L.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

B. Lenssen, Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101(10), 103503 (2012).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (1)

T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Eng. Med. Biol. Mag. 22(6), 33–42 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

R. Moser, R. Wüthrich, L. Sache, T. Higuchi, H. Bleuler, “Characterization of electrostatic glass actuators,” J. Appl. Phys. 93(11), 8945–8951 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Light Sci. Appl. (1)

Y. Akihama, K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6), e16 (2012).
[CrossRef]

Nature (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

A. Butsch, C. Conti, F. Biancalana, P. St. J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108(9), 093903 (2012).
[CrossRef] [PubMed]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St. J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109(18), 183904 (2012).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86(8), 1687–1704 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

F. Füzesi, A. Jornod, P. Thomann, M. D. Plimmer, G. Dudle, R. Moser, L. Sache, H. Bleuler, “An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms,” Rev. Sci. Instrum. 78(10), 103109 (2007).
[CrossRef] [PubMed]

Science (2)

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

V. T. Srikar, S. M. Spearing, “Material selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003).
[CrossRef]

Other (5)

Z. G. Lian, X. Feng, P. Horak, L. Xiao, Y. Jeong, N. White, K. Frampton, J. A. Tucknott, H. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, “Optical fiber with dual suspended submicron-cores,” European Conference on Optical Communications (ECOC) 2011, 18–22 Sep. 2011, Geneva, Switzerland, paper Mo.2.LeCervin.1.

V. Kaajakari, Practical MEMS (Small Gear Publishing, 2009).

T. B. Jones, Electromechanics of Particles (Cambridge University Press, 1995).

J. David, Griffiths, Introduction to Electrodynamics, 3rd edition (Prentice-Hall, 1999).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd edition (Elsevier/Academic Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the dual core fiber cross-section, where Lm and h are the membrane half-length and thickness, g is the air gap between the cores. Inset: l and w mark core length and width, respectively. (b) Electric field profile of hybrid TE and TM modes in a single core (colorplot: electric field amplitude normalized to the maximum of the TE00 mode; arrows: predominant electric field component polarization). (c) Symmetric and antisymmetric TE00 supermodes. (d) Effective mode indices of the TE00 and TM00 supermodes (solid and dashed lines correspond to symmetric and antisymmetric modes) and mode index difference between symmetric and antisymmetric modes of the dual core fiber with core size of 0.6 × 1.2 µm depending on the air gap between the cores. (e) Change of air gap Δgs required to induce one optical switching cycle depending on core size and air gap for the TE00 mode; solid line shows cut-off of the higher order TE10 mode. In all calculations the material refractive index is 1.6, the wavelength is 1550 nm, the fiber length is 10 cm.

Fig. 2
Fig. 2

(a) Electric field and induced material polarization of the dual core fiber in the vicinity of a metal wire electrode. The lines indicate the direction of the electric field. (b) Schematic of the analytical model showing the dielectrophoretic forces Fel1 and Fel2, and the dipole-dipole force Fd1 and Fd2 acting on the top and bottom dielectric cores, respectively, in the external electric field Eo; d is the distance between the core centers.

Fig. 3
Fig. 3

Comparison between numerically (dots) and analytically calculated (lines) electrostatic forces acting on the circular dielectric cores of 1 μm diameter for a range of distances d between their centers, assuming the fiber geometry of Fig. 2(a), and 50 V voltage applied to the electrode. F1 and F2 are the total electrostatic forces, Fel1 and Fel2 are the dielectrophoretic forces acting on the top and bottom dielectric cores, respectively, and Fd is the attractive dipole-dipole force.

Fig. 4
Fig. 4

(a) Different electrode geometries and their electric field distributions. Corresponding (b) E o 2 and (c) 2 E o 2 / x 2 calculated inside the central air hole. In all calculations V = 50 V.

Fig. 5
Fig. 5

Analytically calculated relative displacement Δg between two circular cores of 1 μm diameter depending on the distance between their centers for the fiber electrode configurations of Fig. 4(a). In all calculations V = 50 V. Positive and negative value of Δg corresponds to an increase and decrease of the air gap between the cores, respectively.

Fig. 6
Fig. 6

FEM simulations of the relative core displacement depending on the distance between their centers for fibers with a core size of 0.6 × 1.2 µm and supporting membranes of 0.1 µm thickness and 25 µm length for the fiber electrode configurations of Fig. 4(a). Dashed line: top membrane thickness 0.2 μm. In all calculations V = 50 V.

Fig. 7
Fig. 7

Variation of the output intensity from one of the cores depending on applied voltage for a fiber with four-electrode geometry and with 0.6 × 1.2 µm core size and 2 µm initial distance between the cores. A fiber length of L = 10 cm was assumed. Insets: Mode fields of the switched output.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L b = λ n s n a ,
Δ g s L b 2 L L b g .
Δg F = 1 2E ( L m h ) 3 ,
P=2 ε 0 ε1 ε+1 E 0 .
F el =(p) E 0 =a ε 0 ε1 ε+1 E 0 2 .
Δ F el = F el1 F el2 =a ε 0 d ε1 ε+1 2 x 2 E 0 2 .
E 1 = 1 2π ε 0 [ 2(r p 1 )r r 4 p 1 r 2 ].
F d =( p 2 ) E 1 = 1 π ε 0 p 1 p 2 d 3 4 a 2 π ε 0 (ε1) 2 (ε+1) 2 E 0 2 d 3 .

Metrics