Abstract

We propose a super-channel flexible wavelength division multiplexing (WDM) receiver architecture. The receiver, which requires no optical filtering, only a pair (I and Q phases) of coherent optical detectors, and an electrical receiver system, can simultaneously recover multiple wavelength-multiplexed channels using cascaded optical and electrical down-conversion. The receiver data capacity increases in proportion to the number of electrical sub-carrier channels. The proposed receiver concept has been described using a six-channel WDM receiver, and a two-channel ( ± 25GHz) receiver IC, which is a key block of the WDM receiver, has been successfully demonstrated with two and three 2.5Gb/s binary-phase-shift-key (BPSK) modulated channels.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Infinera, “Super-channels: DWDM Transmission at 100Gb/s and Beyond” WP-SC-10–2012 (2013).
  2. B. Zhang, C. Malouin, T. J. Schmidt, “Towards full band colorless reception with coherent balanced receivers,” Opt. Express 20(9), 10339–10352 (2012).
    [CrossRef] [PubMed]
  3. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally efficient long-haul transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with coherent detection,” OFC'2012 Conference, OW4C2 (2012).
    [CrossRef]
  4. X. Liu, S. Chandrasekhar, P. J. Winzer, T. Lotz, J. Carlson, J. Yang, G. Cheren, and S. Zederbaum, “21.5-Tb/s Guard-Banded Superchannel Transmission over 56x100-km (5600-km) ULAF Using 30-Gbaud Pilot-Free OFDM-16QAM Signals with 5.75-b/s/Hz Net Spectral Efficiency,” in Proceedings of ECOC’2012, post deadline Th3C5 (2012).
  5. T. Zami, “What is the Benefit of Elastic Superchannel for WDM Network?” in Proceedings of ECOC’2013, 22-26 Sept. 2013 (2013).
  6. O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
    [CrossRef]
  7. J. Renaudier, R. Rios-Muller, L. Schmalen, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “1-Tb/s Transceiver Spanning Over Just Three 50-GHz Frequency Slots for Long-Haul Systems,” in Proceedings of ECOC’2013, post deadline PD2D5 (2013).
  8. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
    [CrossRef]
  9. M. Urteaga, R. Pierson, P. Rowell, V. Jain, E. Lobisser, and M. J. W. Rodwell, “130nm InP DHBTs with fτ >0.52THz and fmax >1.1THz,” Device Research Conference (DRC), 2011 69th Annual, 281–282 (2011).
  10. B. Heinemann, R. Barth, D. Bolze, J. Drews, G. G. Fischer, A. Fox, O. Fursenko, T. Grabolla, U. Haak, D. Knoll, R. Kurps, M. Lisker, S. Marschmeyer, H. Rücker, D. Schmidt, J. Schmidt, M. A. Schubert, B. Tillack, C. Wipf, D. Wolansky, and Y. Yamamoto, “SiGe HBT technology with fτ/fmax of 300GHz/500GHz and 2.0 ps CML gate delay,” Electron Devices Meeting (IEDM), 2010 IEEE international, 30.5.1–30.5.4 (2010).
  11. H. Li, B. Jagannathan, J. Wang, T.-C. Su, S. Sweeney, J. J. Pekarik, and Y. Shi, “Technology Scaling and Device Design for 350 GHz RF Performance in a 45nm Bulk CMOS Process,” VLSI Technology, 2007 IEEE Symposium on, 56–57 (2007).
    [CrossRef]
  12. J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).
  13. H. Park, M. Piels, E. Bloch, M. Lu, A. Sivananthan, Z. Griffith, L. Johansson, J. Bowers, L. Coldren, and M. Rodwell, “Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain,” in Proceedings of ECOC’2013, Mo4C3 (2013).
  14. E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
    [CrossRef]
  15. Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)
  16. M. Urteaga, R. Pierson, P. Rowell, M. Choe, D. Mensa, and B. Brar, “Advanced InP DHBT process for high speed LSI circuits,” IPRM 2008. 20th International conference, 1–5 (2008).
    [CrossRef]
  17. E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

2013

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

2012

B. Zhang, C. Malouin, T. J. Schmidt, “Towards full band colorless reception with coherent balanced receivers,” Opt. Express 20(9), 10339–10352 (2012).
[CrossRef] [PubMed]

O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

2000

H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Bloch, E.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Chen, J.

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

Coldren, L. A.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

Furuta, T.

H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

Griffith, Z.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Hacker, J. B.

J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).

He, Z.

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

Ishibashi, T.

H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Ito, H.

H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

Johansson, L. A.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

Kodama, S.

H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Li, Y.

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

Lin, R. H.

J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).

Lord, A.

O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

Lu, M.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

Malouin, C.

Park, H.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

Park, H.-C.

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Reed, T.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

Ritter, D.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Rodwell, M. J. W.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Schmidt, T. J.

Seo, M.

J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).

Skalare, A.

J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).

Stackenas, D.

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

Urteaga, M.

J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

Wu, W.

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

Yoo, S.

O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

Zhang, B.

Zirath, H.

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

Electron. Lett.

H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

IEEE Commun. Mag.

O. Gerstel, M. Jinno, A. Lord, S. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. A. Johansson, L. A. Coldren, D. Ritter, M. J. W. Rodwell, “A 1-20 GHz All-Digital InP HBT Optical Wavelength Synthesis IC,” IEEE Trans. Microw. Theory Tech. 61(1), 570–580 (2013).
[CrossRef]

Opt. Express

Other

J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally efficient long-haul transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with coherent detection,” OFC'2012 Conference, OW4C2 (2012).
[CrossRef]

X. Liu, S. Chandrasekhar, P. J. Winzer, T. Lotz, J. Carlson, J. Yang, G. Cheren, and S. Zederbaum, “21.5-Tb/s Guard-Banded Superchannel Transmission over 56x100-km (5600-km) ULAF Using 30-Gbaud Pilot-Free OFDM-16QAM Signals with 5.75-b/s/Hz Net Spectral Efficiency,” in Proceedings of ECOC’2012, post deadline Th3C5 (2012).

T. Zami, “What is the Benefit of Elastic Superchannel for WDM Network?” in Proceedings of ECOC’2013, 22-26 Sept. 2013 (2013).

M. Urteaga, R. Pierson, P. Rowell, V. Jain, E. Lobisser, and M. J. W. Rodwell, “130nm InP DHBTs with fτ >0.52THz and fmax >1.1THz,” Device Research Conference (DRC), 2011 69th Annual, 281–282 (2011).

B. Heinemann, R. Barth, D. Bolze, J. Drews, G. G. Fischer, A. Fox, O. Fursenko, T. Grabolla, U. Haak, D. Knoll, R. Kurps, M. Lisker, S. Marschmeyer, H. Rücker, D. Schmidt, J. Schmidt, M. A. Schubert, B. Tillack, C. Wipf, D. Wolansky, and Y. Yamamoto, “SiGe HBT technology with fτ/fmax of 300GHz/500GHz and 2.0 ps CML gate delay,” Electron Devices Meeting (IEDM), 2010 IEEE international, 30.5.1–30.5.4 (2010).

H. Li, B. Jagannathan, J. Wang, T.-C. Su, S. Sweeney, J. J. Pekarik, and Y. Shi, “Technology Scaling and Device Design for 350 GHz RF Performance in a 45nm Bulk CMOS Process,” VLSI Technology, 2007 IEEE Symposium on, 56–57 (2007).
[CrossRef]

J. B. Hacker, M. Urteaga, M. Seo, A. Skalare, R. H. Lin, “InP HBT Amplifier MMICs Operating to 0.67 THz,” 2013 IEEE International Microwave Symposium, (2013).

H. Park, M. Piels, E. Bloch, M. Lu, A. Sivananthan, Z. Griffith, L. Johansson, J. Bowers, L. Coldren, and M. Rodwell, “Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain,” in Proceedings of ECOC’2013, Mo4C3 (2013).

Z. He, W. Wu, J. Chen, Y. Li, D. Stackenas, H. Zirath, “An FPGA-based 5 Gbit/s D-QPSK modem for E-band point-to-point radios,” 2011 European Microwave Conference, 690–692 (2011)

M. Urteaga, R. Pierson, P. Rowell, M. Choe, D. Mensa, and B. Brar, “Advanced InP DHBT process for high speed LSI circuits,” IPRM 2008. 20th International conference, 1–5 (2008).
[CrossRef]

E. Bloch, H.-C. Park, Z. Griffith, M. Urteaga, D. Ritter, M. J. W. Rodwell, “A 107 GHz 55 dBΩ InP broadband transimpedance amplifier IC for high-speed optical communication links,” in Proceedings of IEEE CSICS, 2013 (2013), pp. 1–4.

J. Renaudier, R. Rios-Muller, L. Schmalen, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “1-Tb/s Transceiver Spanning Over Just Three 50-GHz Frequency Slots for Long-Haul Systems,” in Proceedings of ECOC’2013, post deadline PD2D5 (2013).

Infinera, “Super-channels: DWDM Transmission at 100Gb/s and Beyond” WP-SC-10–2012 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two different WDM receiver concepts: (a) conventional WDM receiver using optical filters, and (b) a new proposed WDM receiver.

Fig. 2
Fig. 2

A concept schematic diagram for a coherent single-chip multi-channel WDM receiver and its de-multiplexing flows for six modulated channels.

Fig. 3
Fig. 3

(a) An EIC schematic for a two-channel ( ± 25GHz) receiver IC, and (b) a photograph of the fabricated and mounted EIC on the test AlN board.

Fig. 4
Fig. 4

Test setup for image rejection using two wavelength channels.

Fig. 5
Fig. 5

Experimental results for image rejection measurement: (a)-(b) the eye diagrams for the activated ( + ) channel and the suppressed (-) channel with a single modulated carrier, (c)-(d) the eye diagrams for the ( + ) and (-) channels with two modulated carriers, and (e) the measured output spectra when the signal and the adjacent (crosstalk) channels are active. Crosstalk suppression is ~25dB.

Fig. 6
Fig. 6

Test setup for adjacent channel interference measurements using three wavelength channels.

Fig. 7
Fig. 7

Measured optical spectra for different channel spacing: (a) 20GHz, (b) 10GHz, and (c) 5GHz. The narrow band tone visible in (b) and (c) is from the LO laser.

Fig. 8
Fig. 8

Measured eye diagram qualities for the different channel spacing and filter combinations (filter #1 – before the optical modulators, and filter #2 – after the EIC).

Metrics