Abstract

In this paper, the performance of Zero Padding Orthogonal Frequency Division Multiplexing (ZP-OFDM) on intensity modulation-direct detection (IM-DD) multimode fiber (MMF) links is assessed by means of numerical simulations. The performance of ZP-OFDM is compared to classical Cyclic Prefixed form of OFDM (CP-OFDM) which is known to offer a limited performance in terms of symbol recovery in subcarriers suffering severe fading. Simulations results show that ZP-OFDM is able to reach 29 Gbps in 99.5% of all installed MMF links up to 600 meters compared to 14 Gbps for CP-OFDM when a 64 points fast Fourier transform (FFT) size is used. The use of ZP-OFDM makes it possible to increase the link length up to 1200 and 2400 m with a 25 Gbps data rate if the FFT sizes are increased to 128 and 256 points, respectively; whereas the CP-OFDM scheme will offer a maximum data rate of 10 Gbps in both cases. ZP-OFDM can be an alternative to adaptive loading OFDM schemes without the need of a negotiation between transmitter and receiver, reducing the system deployment complexity and increasing the flexibility in scenarios with multiple receivers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, A. V. Krishnamoorthy, “PAM-4 Signaling over VCSELs with 0.13μm CMOS Chip Technology,” Opt. Express 14(25), 12028–12038 (2006).
    [CrossRef] [PubMed]
  2. I. Gasulla, J. Capmany, “1 Tb/s x km Multimode fiber link combining WDM transmission and low-linewidth lasers,” Opt. Express 16(11), 8033–8038 (2008).
    [CrossRef] [PubMed]
  3. C. Xia, M. Ajgaonkar, W. Rosenkranz, “On the performance of the electrical equalization technique in MMF links for 10-gigabit Ethernet,” J. Lightwave Technol. 23(6), 2001–2011 (2005).
    [CrossRef]
  4. A. J. Lowery, J. Armstrong, “10 Gbit/s multimode fiber link using power- efficient orthogonal-frequency-division multiplexing,” Opt. Express 13(25), 10003–10009 (2005).
    [CrossRef] [PubMed]
  5. J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
    [CrossRef]
  6. Z. Wang, G. B. Giannakis, “Linearly Precoded or Coded OFDM against Wireless Channel Fades?” in Proceedings of IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taiwan (2001), pp. 267–270.
  7. E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
    [CrossRef]
  8. J. M. Tang, P. M. Lane, K. A. Shore, “Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
    [CrossRef]
  9. X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical Investigations of the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” J. Lightwave Technol. 26(18), 3216–3224 (2008).
    [CrossRef]
  10. S. Kanprachar, I. Jacobs, “Diversity Coding for Subcarrier Multiplexing on Multimode Fibers,” IEEE Trans. Commun. 51(9), 1546–1553 (2003).
    [CrossRef]
  11. B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
    [CrossRef]
  12. J. M. Tang, K. A. Shore, “Maximizing the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode-Fiber Links by Optimizing Analog-to-Digital Converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [CrossRef]
  13. D. J. G. Mestdagh, P. M. P. Spruyt, B. Biran, “Effect of Amplitude Clipping in DMT-ADSL Transceivers,” Electron. Lett. 29(15), 1354–1355 (1993).
    [CrossRef]

2013 (1)

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

2010 (1)

E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[CrossRef]

2008 (2)

2007 (1)

2006 (2)

J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, A. V. Krishnamoorthy, “PAM-4 Signaling over VCSELs with 0.13μm CMOS Chip Technology,” Opt. Express 14(25), 12028–12038 (2006).
[CrossRef] [PubMed]

J. M. Tang, P. M. Lane, K. A. Shore, “Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

2005 (2)

2003 (1)

S. Kanprachar, I. Jacobs, “Diversity Coding for Subcarrier Multiplexing on Multimode Fibers,” IEEE Trans. Commun. 51(9), 1546–1553 (2003).
[CrossRef]

2002 (1)

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

1993 (1)

D. J. G. Mestdagh, P. M. P. Spruyt, B. Biran, “Effect of Amplitude Clipping in DMT-ADSL Transceivers,” Electron. Lett. 29(15), 1354–1355 (1993).
[CrossRef]

Ajgaonkar, M.

Armstrong, J.

Beckman, D.

Biran, B.

D. J. G. Mestdagh, P. M. P. Spruyt, B. Biran, “Effect of Amplitude Clipping in DMT-ADSL Transceivers,” Electron. Lett. 29(15), 1354–1355 (1993).
[CrossRef]

Capmany, J.

Courville, M.

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

Cunningham, J. E.

Duhamel, P.

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

Gasulla, I.

Giacoumidis, E.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[CrossRef]

Giannakis, G. B.

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

Z. Wang, G. B. Giannakis, “Linearly Precoded or Coded OFDM against Wireless Channel Fades?” in Proceedings of IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taiwan (2001), pp. 267–270.

Huang, D.

Jacobs, I.

S. Kanprachar, I. Jacobs, “Diversity Coding for Subcarrier Multiplexing on Multimode Fibers,” IEEE Trans. Commun. 51(9), 1546–1553 (2003).
[CrossRef]

Jin, X. Q.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[CrossRef]

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical Investigations of the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” J. Lightwave Technol. 26(18), 3216–3224 (2008).
[CrossRef]

Kanprachar, S.

S. Kanprachar, I. Jacobs, “Diversity Coding for Subcarrier Multiplexing on Multimode Fibers,” IEEE Trans. Commun. 51(9), 1546–1553 (2003).
[CrossRef]

Krishnamoorthy, A. V.

Lane, P. M.

J. M. Tang, P. M. Lane, K. A. Shore, “Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

Lowery, A. J.

Mestdagh, D. J. G.

D. J. G. Mestdagh, P. M. P. Spruyt, B. Biran, “Effect of Amplitude Clipping in DMT-ADSL Transceivers,” Electron. Lett. 29(15), 1354–1355 (1993).
[CrossRef]

Muquet, B.

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

Qiu, K.

Rath, R.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

Rosenkranz, W.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

C. Xia, M. Ajgaonkar, W. Rosenkranz, “On the performance of the electrical equalization technique in MMF links for 10-gigabit Ethernet,” J. Lightwave Technol. 23(6), 2001–2011 (2005).
[CrossRef]

Ruprecht, C.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

Shore, K. A.

J. M. Tang, K. A. Shore, “Maximizing the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode-Fiber Links by Optimizing Analog-to-Digital Converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. M. Tang, P. M. Lane, K. A. Shore, “Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

Spencer, P. S.

Spruyt, P. M. P.

D. J. G. Mestdagh, P. M. P. Spruyt, B. Biran, “Effect of Amplitude Clipping in DMT-ADSL Transceivers,” Electron. Lett. 29(15), 1354–1355 (1993).
[CrossRef]

Sze, T.

Tang, J. M.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[CrossRef]

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical Investigations of the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” J. Lightwave Technol. 26(18), 3216–3224 (2008).
[CrossRef]

J. M. Tang, K. A. Shore, “Maximizing the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode-Fiber Links by Optimizing Analog-to-Digital Converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. M. Tang, P. M. Lane, K. A. Shore, “Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

Tsokanos, A.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[CrossRef]

von Hoyningen-Huene, J.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

Wang, Z.

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

Z. Wang, G. B. Giannakis, “Linearly Precoded or Coded OFDM against Wireless Channel Fades?” in Proceedings of IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taiwan (2001), pp. 267–270.

Xia, C.

Xu, J.

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

Zheng, X.

Electron. Lett. (1)

D. J. G. Mestdagh, P. M. P. Spruyt, B. Biran, “Effect of Amplitude Clipping in DMT-ADSL Transceivers,” Electron. Lett. 29(15), 1354–1355 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Xu, J. von Hoyningen-Huene, C. Ruprecht, R. Rath, W. Rosenkranz, “Robust Transmission of 29-Gb/s OFDM Signal Over 1-km OM1 MMF Under Center Launching,” IEEE Photon. Technol. Lett. 25(2), 206–209 (2013).
[CrossRef]

J. M. Tang, P. M. Lane, K. A. Shore, “Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

IEEE Photonics J. (1)

E. Giacoumidis, X. Q. Jin, A. Tsokanos, J. M. Tang, “Statistical Performance Comparisons of Optical OFDM Adaptive Loading Algorithms in Multimode Fiber-Based Transmission Systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[CrossRef]

IEEE Trans. Commun. (2)

S. Kanprachar, I. Jacobs, “Diversity Coding for Subcarrier Multiplexing on Multimode Fibers,” IEEE Trans. Commun. 51(9), 1546–1553 (2003).
[CrossRef]

B. Muquet, Z. Wang, G. B. Giannakis, M. Courville, P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?” IEEE Trans. Commun. 50(12), 2136–2148 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Other (1)

Z. Wang, G. B. Giannakis, “Linearly Precoded or Coded OFDM against Wireless Channel Fades?” in Proceedings of IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taiwan (2001), pp. 267–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Example of frequency response for a 600 m MMF link with the respective position of OFDM subcarriers (64 points FFT-size) depicted as dots.

Fig. 2
Fig. 2

SNR in a real OFDM signal as a function of the clipping level for different quantization resolutions.

Fig. 3
Fig. 3

CP-OFDM and ZP-OFDM BER curves for the MMF link from Fig. 1 for various quantization resolutions: no quantization, 10 bits, 9 bits and 8 bits.

Fig. 4
Fig. 4

CP-OFDM and ZP-OFDM BER results per subcarrier for the MMF link from Fig. 1 using a launch power of 5 dBm and 8 bits quantization.

Fig. 5
Fig. 5

CDF curves for BER < 1 × 10−3 for CP-OFDM and ZP-OFDM with 64-points FFT, 16 samples of guard interval and a quantization of 10 bits.

Fig. 6
Fig. 6

Comparison of CDF curves for CP-OFDM and ZP-OFDM with 8, 9 and 10 bits quantization in a 600 m link using 64-points FFT and 16 samples of guard interval.

Fig. 7
Fig. 7

CDF curves for BER<1 × 10−3 for CP-OFDM and ZP-OFDM over maximum achievable distance for 64, 128 and 256 FFT size and quantization of 8 bits.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R= F N r= F N Ω cp F N H S+ F N v=diag( H 0 ... H k ... H n1 )S+V,
S ^ k = R k H k = S k + V k H k ,
G= F N Ω zp + ,
h( t )= k=1 K β k g( t τ k )
A E ( t )= | A O ( t ) | 2 h ( t )+n( t ),

Metrics