Abstract

High speed and high sensitivity time-of-flight lidar is demonstrated by judiciously choosing the repetition rates of a pulsed optical source and the gate rate of a GHz gated single photon detector. Sub-mm ranging can be performed in sub-ms time scales at low received powers. We also demonstrate a method to extend the unambiguous measurement range by simultaneously transmitting multiple optical pulse rates and measuring the return signal with a single detector.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates

Philip A. Hiskett, Colin S. Parry, Aongus McCarthy, and Gerald S. Buller
Opt. Express 16(18) 13685-13698 (2008)

Resolving range ambiguity in a photon counting depth imager operating at kilometer distances

Nils J. Krichel, Aongus McCarthy, and Gerald S. Buller
Opt. Express 18(9) 9192-9206 (2010)

3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors

Kateryna Kuzmenko, Peter Vines, Abderrahim Halimi, Robert J. Collins, Aurora Maccarone, Aongus McCarthy, Zoë M. Greener, Jarosław Kirdoda, Derek C. S. Dumas, Lourdes Ferre Llin, Muhammad M. Mirza, Ross W. Millar, Douglas J. Paul, and Gerald S. Buller
Opt. Express 28(2) 1330-1344 (2020)

References

  • View by:
  • |
  • |
  • |

  1. P. Adany, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” J. Lightwave Technol. 27(16), 3351–3357 (2009).
    [Crossref]
  2. F. R. Giorgetta, E. Baumann, K. Knabe, I. Coddington, and N. R. Newbury, “High-resolution Ranging of a Diffuse Target at Sub-Millisecond Intervals with a Calibrated FMCW Lidar,” in CLEO: Science and Innovations, OSA (2012), paper CF3C.2.
  3. T. A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  4. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
    [Crossref]
  5. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  6. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
    [Crossref]
  7. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
    [Crossref]
  8. A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
    [Crossref]
  9. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011).
    [Crossref] [PubMed]
  10. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [Crossref] [PubMed]
  11. Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, and H. Zeng, “1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity,” Opt. Express 22(4), 4662–4670 (2014).
    [Crossref] [PubMed]
  12. G. S. Kanter and D. Reilly, “Lidar velocity measurement using a GHz gated photon detector and locked but unequal optical pulse rate,” in CLEO: Applications and Technology, OSA (2014), pp. AW3H–3.

2014 (1)

2013 (2)

2012 (1)

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

2011 (2)

2009 (1)

2008 (1)

2007 (2)

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

Adany, P.

Allen, C.

Barreiro, C.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

Ben-Michael, R.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Bienfang, J.

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[Crossref]

Buller, G. S.

Chen, X.

Coddington, I.

Cova, S.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Della Frera, A.

Feng, B.

Gautier, J.-D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

Gemmell, N. R.

Gu, X.

Guinnard, O.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

Hiskett, P. A.

Houlmann, R.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

Hsu, C. F.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Huang, J.

Hui, R.

Ispasoiu, R.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Itzler, M. A.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Jiang, X.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

Kong, W.

Krichel, N. J.

Liang, Y.

Liu, T. A.

Lunghi, T.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

McCarthy, A.

Migdall, A. L.

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[Crossref]

Newbury, N. R.

Parry, C. S.

Ren, M.

Ren, X.

Restelli, A.

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[Crossref]

Rochas, A.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

Ruggeri, A.

Scarcella, C.

Slomkowski, K.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Stucki, D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

Thew, R. T.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

Tosi, A.

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Wu, E.

Wu, G.

Zappa, F.

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

Zbinden, H.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

Zeng, H.

Appl. Phys. Lett. (2)

A. Restelli, J. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91(20), 201114 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (2)

M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μ m photon counting applications,” J. Mod. Opt. 54(2-3), 283–304 (2007).
[Crossref]

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[Crossref]

Opt. Express (5)

Other (2)

G. S. Kanter and D. Reilly, “Lidar velocity measurement using a GHz gated photon detector and locked but unequal optical pulse rate,” in CLEO: Applications and Technology, OSA (2014), pp. AW3H–3.

F. R. Giorgetta, E. Baumann, K. Knabe, I. Coddington, and N. R. Newbury, “High-resolution Ranging of a Diffuse Target at Sub-Millisecond Intervals with a Calibrated FMCW Lidar,” in CLEO: Science and Innovations, OSA (2012), paper CF3C.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Block diagram of GET lidar system configured for measuring ranging resolution vs. optical power. (b) Re-ordered histograms of 80 bins (black open squares) and 85 bins (blue filled diamonds). Dotted lines connect the points to guide the eye.
Fig. 2
Fig. 2 (a) Resolution as a function of received power for 109 MHz (open squares) and 88 MHz (filled diamonds) pulses. The dotted line shows the expected trend for count-statistics limited performance (see text). (b) Corresponding failure probability for the extended range calculation.
Fig. 3
Fig. 3 Range measurements to a moving curved fan blade as a function of time. (a) 500 μs per point, about −75 dBm power. The curve is a best 2nd order polynomial line. (b) 100 μs per point, −80 dBm power with the same fitting curve.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 1,2 = D 1 D 2 c 2G f gate ,
| e 1 e 2 |< Gc 4 N 1 N 2 f gate

Metrics