J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Jpn. J. Appl. Phys. 33(1A), 186–192 (1994).
A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett. 6(10), 2191–2195 (2006).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev. 21(5), 209–211 (2000).
[Crossref]
A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of 2(3), 276–293 (2012).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys. 83(8), 4213–4221 (1998).
[Crossref]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C. 80(2), 215–219 (2006).
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C. 80(2), 215–219 (2006).
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]
Y.-J. Lee, C.-J. Lee, and C.-M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,” Opt. Express 18(S4), A554–A561 (2010).
[Crossref]
[PubMed]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev. 21(5), 209–211 (2000).
[Crossref]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett. 6(10), 2191–2195 (2006).
[Crossref]
[PubMed]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of 2(3), 276–293 (2012).
[Crossref]
F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2(15), 1879–1887 (2011).
[Crossref]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Jpn. J. Appl. Phys. 33(1A), 186–192 (1994).
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2(15), 1879–1887 (2011).
[Crossref]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref]
[PubMed]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]
Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express 21(S1Suppl 1), A7–A14 (2013).
[Crossref]
[PubMed]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]
Y.-J. Lee, C.-J. Lee, and C.-M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,” Opt. Express 18(S4), A554–A561 (2010).
[Crossref]
[PubMed]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C. 80(2), 215–219 (2006).
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Jpn. J. Appl. Phys. 33(1A), 186–192 (1994).
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1–2), 115–120 (2002).
[Crossref]
H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Jpn. J. Appl. Phys. 33(1A), 186–192 (1994).
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys. 83(8), 4213–4221 (1998).
[Crossref]
W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]
F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2(15), 1879–1887 (2011).
[Crossref]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref]
[PubMed]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev. 21(5), 209–211 (2000).
[Crossref]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]
D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses,” J. Non-Cryst. Solids 355(31–33), 1597–1601 (2009).
[Crossref]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses,” J. Non-Cryst. Solids 355(31–33), 1597–1601 (2009).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of 2(3), 276–293 (2012).
[Crossref]
K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies 2(3), 504–530 (2009).
[Crossref]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C. 80(2), 215–219 (2006).
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2(15), 1879–1887 (2011).
[Crossref]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C. 80(2), 215–219 (2006).
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys. 83(8), 4213–4221 (1998).
[Crossref]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys. 83(8), 4213–4221 (1998).
[Crossref]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2(15), 1879–1887 (2011).
[Crossref]
A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of 2(3), 276–293 (2012).
[Crossref]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express 21(S1Suppl 1), A7–A14 (2013).
[Crossref]
[PubMed]
Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express 21(S1Suppl 1), A7–A14 (2013).
[Crossref]
[PubMed]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett. 6(10), 2191–2195 (2006).
[Crossref]
[PubMed]
C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).
[Crossref]
[PubMed]
X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[Crossref]
Y.-J. Lee, M.-H. Lee, C.-M. Cheng, and C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl. Phys. Lett. 98(26), 263504 (2011).
[Crossref]
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]
M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).
[Crossref]
J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]
K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies 2(3), 504–530 (2009).
[Crossref]
F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev. 21(5), 209–211 (2000).
[Crossref]
J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009).
[Crossref]
W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]
M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys. 83(8), 4213–4221 (1998).
[Crossref]
D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses,” J. Non-Cryst. Solids 355(31–33), 1597–1601 (2009).
[Crossref]
F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2(15), 1879–1887 (2011).
[Crossref]
H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Jpn. J. Appl. Phys. 33(1A), 186–192 (1994).
A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett. 6(10), 2191–2195 (2006).
[Crossref]
[PubMed]
P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[Crossref]
[PubMed]
Y.-J. Lee, C.-J. Lee, and C.-M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,” Opt. Express 18(S4), A554–A561 (2010).
[Crossref]
[PubMed]
Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[Crossref]
[PubMed]
Y.-J. Lee, Y.-C. Yao, and C.-H. Yang, “Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells,” Opt. Express 21(S1Suppl 1), A7–A14 (2013).
[Crossref]
[PubMed]
A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of 2(3), 276–293 (2012).
[Crossref]
R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref]
[PubMed]
A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1–2), 115–120 (2002).
[Crossref]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref]
[PubMed]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]
[PubMed]
M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” Sol Energ Mat Sol C. 80(2), 215–219 (2006).
Sharp Develops Concentrator Solar Cell with World's Highest Conversion Efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013)
M. W. Wanlass, S. P. Ahrenkiel, R. K. Ahrenkiel, D. S. Albin, J. J. Carapella, A. Duda, J. F. Geisz, S. Kurtz, T. Moriarty, R. J. Wehrer, and B. Wernsman, “Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 530–535.
[Crossref]
R. R. King, M. Haddad, T. Isshiki, P. Colter, J. Ermer, H. Yoon, D. E. Joslin, and N. H. Karam, “Next-generation, high-efficiency III-V multijunction solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 998–1001.
[Crossref]
L. A. Kosyachenko, Solar Cells-Silicon Wafer-Based Technologies (InTech, Rijeka, Croatia, 2011), p. 335–337.
M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set) (McGraw Hill Professional, New York, 2009).
ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).