Abstract

The spectral conversion of incident sunlight by appropriate photoluminescent materials has been a widely studied issue for improving the efficiency of photovoltaic solar energy harvesting. By using phosphors with suitable excitation/emission properties, also the light conditions for plants can be adjusted to match the absorption spectra of chlorophyll dyes, in this way increasing the photosynthetic activity of the plant. Here, we report on the application of this principle to a high plant, Spinacia oleracea. We employ a calcium strontium sulfide phosphor doped with divalent europium (Ca0.4Sr0.6S:Eu2+, CSSE) on a backlight conversion foil in photosynthesis experiments. We show that this phosphor can be used to effectively convert green to red light, centering at a wavelength of ~650 nm which overlaps the absorption peaks of chlorophyll a/b pigments. A measurement system was developed to monitor the photosynthetic activity, expressed as the CO2 assimilation rate of spinach leaves under various controlled light conditions. Results show that under identical external light supply which is rich in green photons, the CO2 assimilation rate can be enhanced by more than 25% when the actinic light is modified by the CSSE conversion foil as compared to a purely reflecting reference foil. These results show that the phosphor could be potentially applied to modify the solar spectrum by converting the green photons into photosynthetically active red photons for improved photosynthetic activity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Taiz and E. Zeiger, “Photosynthesis: the light reactions,” in Plant Physiology (Sinauer Associates, Inc., 2006), pp. 126–158.
  2. N. R. Bulley, C. D. Nelson, E. B. Tregunna, “Photosynthesis: action spectra for leaves in normal and low oxygen,” Plant Physiol. 44(5), 678–684 (1969).
    [CrossRef] [PubMed]
  3. J. B. Clark, G. R. Lister, “Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements,” Plant Physiol. 55(2), 401–406 (1975).
    [CrossRef] [PubMed]
  4. K. J. McCree, “The action spectrum, absorptance and quantum yield of photosynthesis in crop plants,” Agric. Meteorol. 9, 191–216 (1972).
    [CrossRef]
  5. K. Inada, “Action spectra for photosynthesis in higher plants,” Plant Cell Physiol. 17, 355–365 (1976).
  6. A. Andersen, “Comparison of fluorescent lamps as an energy source for production of tomato plants in a controlled environment,” Sci. Hortic. (Amsterdam) 28(1-2), 11–18 (1986).
    [CrossRef]
  7. N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
    [CrossRef]
  8. J. Ernstsen, I. E. Woodrow, K. A. Mott, “Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness,” Photosynth. Res. 61(1), 65–75 (1999).
    [CrossRef]
  9. K. Humbeck, B. Hoffmann, H. Senger, “Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus,” Planta 173(2), 205–212 (1988).
    [CrossRef]
  10. N. G. Bukhov, I. S. Drozdova, V. V. Bondar, “Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light,” J. Photochem. Photobiol. B 30(1), 39–41 (1995).
    [CrossRef]
  11. H. Yu, B. Ong, “Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings,” Photosynthetica 41(3), 349–355 (2003).
    [CrossRef]
  12. G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
    [CrossRef] [PubMed]
  13. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
    [CrossRef]
  14. J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
    [CrossRef]
  15. S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).
  16. L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
    [CrossRef]
  17. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  18. G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
    [CrossRef]
  19. G. Gao, N. Da, S. Reibstein, L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
    [CrossRef] [PubMed]
  20. P. F. Smet, I. Moreels, Z. Hens, D. Poelman, “Luminescence in sulfides: a rich history and a bright future,” Mater. 3(4), 2834–2883 (2010).
    [CrossRef]
  21. Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
    [CrossRef]
  22. L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
    [CrossRef] [PubMed]
  23. E. Danielson, A. Ellens, F. Jermann, W. Rossner, M. Devenney, D. Giaquinta, and M. Kobusch, “Light emitting device for generating specific colored light, including white light,” US Patent no. 6,850,002 B2 (2005).
  24. S. Lian, “Ultramicro/nano solar dual conversion material, and its preparing method and use. Chin. Patent application. no. CN 1935937 A (2007).
  25. Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D.-P. Häder, J. Schneider, L. Wondraczek, A. Winnacker, and C. J. Brabec, “Red-emitting Ca(1-x)SrxS:Eu2+ phosphors as light converters for plant-growth applications. MRS Proc. 1342, mrss11-1342-v04-04 (2011).
    [CrossRef]
  26. H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
    [CrossRef] [PubMed]
  27. G. E. Edwards, N. R. Baker, “Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?” Photosynth. Res. 37(2), 89–102 (1993).
    [CrossRef]

2013 (1)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

2011 (1)

G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

2010 (2)

2009 (1)

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

2008 (1)

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

2006 (1)

J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
[CrossRef]

2005 (1)

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

2003 (1)

H. Yu, B. Ong, “Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings,” Photosynthetica 41(3), 349–355 (2003).
[CrossRef]

2002 (1)

S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).

1999 (1)

J. Ernstsen, I. E. Woodrow, K. A. Mott, “Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness,” Photosynth. Res. 61(1), 65–75 (1999).
[CrossRef]

1997 (1)

G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
[CrossRef] [PubMed]

1995 (1)

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, “Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light,” J. Photochem. Photobiol. B 30(1), 39–41 (1995).
[CrossRef]

1993 (1)

G. E. Edwards, N. R. Baker, “Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?” Photosynth. Res. 37(2), 89–102 (1993).
[CrossRef]

1992 (1)

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
[CrossRef]

1988 (1)

K. Humbeck, B. Hoffmann, H. Senger, “Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus,” Planta 173(2), 205–212 (1988).
[CrossRef]

1986 (1)

A. Andersen, “Comparison of fluorescent lamps as an energy source for production of tomato plants in a controlled environment,” Sci. Hortic. (Amsterdam) 28(1-2), 11–18 (1986).
[CrossRef]

1983 (1)

H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
[CrossRef] [PubMed]

1976 (1)

K. Inada, “Action spectra for photosynthesis in higher plants,” Plant Cell Physiol. 17, 355–365 (1976).

1975 (1)

J. B. Clark, G. R. Lister, “Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements,” Plant Physiol. 55(2), 401–406 (1975).
[CrossRef] [PubMed]

1972 (1)

K. J. McCree, “The action spectrum, absorptance and quantum yield of photosynthesis in crop plants,” Agric. Meteorol. 9, 191–216 (1972).
[CrossRef]

1969 (1)

N. R. Bulley, C. D. Nelson, E. B. Tregunna, “Photosynthesis: action spectra for leaves in normal and low oxygen,” Plant Physiol. 44(5), 678–684 (1969).
[CrossRef] [PubMed]

Andersen, A.

A. Andersen, “Comparison of fluorescent lamps as an energy source for production of tomato plants in a controlled environment,” Sci. Hortic. (Amsterdam) 28(1-2), 11–18 (1986).
[CrossRef]

Baker, N. R.

G. E. Edwards, N. R. Baker, “Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?” Photosynth. Res. 37(2), 89–102 (1993).
[CrossRef]

Batentschuk, M.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

Bliznikas, Z.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Bondar, V. V.

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, “Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light,” J. Photochem. Photobiol. B 30(1), 39–41 (1995).
[CrossRef]

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
[CrossRef]

Borchardt, R.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Brabec, C. J.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Brazaeityte, A.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Breive, K.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Brown, C. S.

G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
[CrossRef] [PubMed]

Bukhov, N. G.

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, “Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light,” J. Photochem. Photobiol. B 30(1), 39–41 (1995).
[CrossRef]

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
[CrossRef]

Bulley, N. R.

N. R. Bulley, C. D. Nelson, E. B. Tregunna, “Photosynthesis: action spectra for leaves in normal and low oxygen,” Plant Physiol. 44(5), 678–684 (1969).
[CrossRef] [PubMed]

Chu, C.

H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
[CrossRef] [PubMed]

Clark, J. B.

J. B. Clark, G. R. Lister, “Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements,” Plant Physiol. 55(2), 401–406 (1975).
[CrossRef] [PubMed]

Da, N.

Drozdova, I. S.

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, “Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light,” J. Photochem. Photobiol. B 30(1), 39–41 (1995).
[CrossRef]

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
[CrossRef]

Duchovskis, P.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Edwards, G. E.

G. E. Edwards, N. R. Baker, “Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?” Photosynth. Res. 37(2), 89–102 (1993).
[CrossRef]

Ernstsen, J.

J. Ernstsen, I. E. Woodrow, K. A. Mott, “Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness,” Photosynth. Res. 61(1), 65–75 (1999).
[CrossRef]

Field, C.

H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
[CrossRef] [PubMed]

Gao, G.

G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, N. Da, S. Reibstein, L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Goins, G. D.

G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
[CrossRef] [PubMed]

Hens, Z.

P. F. Smet, I. Moreels, Z. Hens, D. Poelman, “Luminescence in sulfides: a rich history and a bright future,” Mater. 3(4), 2834–2883 (2010).
[CrossRef]

Heo, J. W.

J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
[CrossRef]

Hoffmann, B.

K. Humbeck, B. Hoffmann, H. Senger, “Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus,” Planta 173(2), 205–212 (1988).
[CrossRef]

Humbeck, K.

K. Humbeck, B. Hoffmann, H. Senger, “Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus,” Planta 173(2), 205–212 (1988).
[CrossRef]

Inada, K.

K. Inada, “Action spectra for photosynthesis in higher plants,” Plant Cell Physiol. 17, 355–365 (1976).

Kim, S. K.

J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
[CrossRef]

Li, C.

S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).

Lian, S.

S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).

Lister, G. R.

J. B. Clark, G. R. Lister, “Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements,” Plant Physiol. 55(2), 401–406 (1975).
[CrossRef] [PubMed]

Lu, Q.

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

Ma, L.

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

Mao, X.

S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).

Mao, Z.

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

McCree, K. J.

K. J. McCree, “The action spectrum, absorptance and quantum yield of photosynthesis in crop plants,” Agric. Meteorol. 9, 191–216 (1972).
[CrossRef]

Mokronosov, A. T.

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
[CrossRef]

Mooney, H. A.

H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
[CrossRef] [PubMed]

Moreels, I.

P. F. Smet, I. Moreels, Z. Hens, D. Poelman, “Luminescence in sulfides: a rich history and a bright future,” Mater. 3(4), 2834–2883 (2010).
[CrossRef]

Mott, K. A.

J. Ernstsen, I. E. Woodrow, K. A. Mott, “Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness,” Photosynth. Res. 61(1), 65–75 (1999).
[CrossRef]

Nelson, C. D.

N. R. Bulley, C. D. Nelson, E. B. Tregunna, “Photosynthesis: action spectra for leaves in normal and low oxygen,” Plant Physiol. 44(5), 678–684 (1969).
[CrossRef] [PubMed]

Novickovas, A.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Ong, B.

H. Yu, B. Ong, “Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings,” Photosynthetica 41(3), 349–355 (2003).
[CrossRef]

Osvet, A.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

Paek, K. Y.

J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
[CrossRef]

Peng, M.

G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

Poelman, D.

P. F. Smet, I. Moreels, Z. Hens, D. Poelman, “Luminescence in sulfides: a rich history and a bright future,” Mater. 3(4), 2834–2883 (2010).
[CrossRef]

Reibstein, S.

G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, N. Da, S. Reibstein, L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Sanwo, M. M.

G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
[CrossRef] [PubMed]

Scheiner, S.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Schmidt, M. A.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Schneider, J.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

Schweizer, P.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Seemann, B.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Senger, H.

K. Humbeck, B. Hoffmann, H. Senger, “Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus,” Planta 173(2), 205–212 (1988).
[CrossRef]

Shin, K. S.

J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
[CrossRef]

Smet, P. F.

P. F. Smet, I. Moreels, Z. Hens, D. Poelman, “Luminescence in sulfides: a rich history and a bright future,” Mater. 3(4), 2834–2883 (2010).
[CrossRef]

Tamulaitis, G.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Tregunna, E. B.

N. R. Bulley, C. D. Nelson, E. B. Tregunna, “Photosynthesis: action spectra for leaves in normal and low oxygen,” Plant Physiol. 44(5), 678–684 (1969).
[CrossRef] [PubMed]

Ulinskaite, R.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Wang, D.

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

Winnacker, A.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

Wondraczek, L.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, N. Da, S. Reibstein, L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Woodrow, I. E.

J. Ernstsen, I. E. Woodrow, K. A. Mott, “Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness,” Photosynth. Res. 61(1), 65–75 (1999).
[CrossRef]

Xia, Q.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

Yanes, C. V.

H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
[CrossRef] [PubMed]

Yorio, N. C.

G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
[CrossRef] [PubMed]

Yu, H.

H. Yu, B. Ong, “Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings,” Photosynthetica 41(3), 349–355 (2003).
[CrossRef]

Yuan, Z.

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

Zhang, H.

S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).

Zukauskas, A.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

Agric. Meteorol. (1)

K. J. McCree, “The action spectrum, absorptance and quantum yield of photosynthesis in crop plants,” Agric. Meteorol. 9, 191–216 (1972).
[CrossRef]

Appl. Phys. Lett. (1)

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan, “Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ A=Ca,Sr,Ba for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93(14), 144101 (2008).
[CrossRef]

Chin. Rare Earths. (1)

S. Lian, C. Li, X. Mao, H. Zhang, “H. “On application of converting green to red of CaS:Eu in agriculture,” Chin. Rare Earths. 23, 37–40 (2002).

J. Exp. Bot. (1)

G. D. Goins, N. C. Yorio, M. M. Sanwo, C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48(7), 1407–1413 (1997).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

G. Gao, S. Reibstein, M. Peng, L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

J. Photochem. Photobiol. B (1)

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, “Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light,” J. Photochem. Photobiol. B 30(1), 39–41 (1995).
[CrossRef]

J. Phys. D Appl. Phys. (1)

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaeityte, A. Novickovas, A. Zukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D Appl. Phys. 38(17), 3182–3187 (2005).
[CrossRef]

J. Plant Biol. (1)

J. W. Heo, K. S. Shin, S. K. Kim, K. Y. Paek, “Light quality affects in vitro growth of grape 'Teleki 5BB',” J. Plant Biol. 49(4), 276–280 (2006).
[CrossRef]

Mater. (1)

P. F. Smet, I. Moreels, Z. Hens, D. Poelman, “Luminescence in sulfides: a rich history and a bright future,” Mater. 3(4), 2834–2883 (2010).
[CrossRef]

Nat Commun (1)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun 4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Opt. Express (1)

Photosynth. Res. (2)

J. Ernstsen, I. E. Woodrow, K. A. Mott, “Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness,” Photosynth. Res. 61(1), 65–75 (1999).
[CrossRef]

G. E. Edwards, N. R. Baker, “Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?” Photosynth. Res. 37(2), 89–102 (1993).
[CrossRef]

Photosynthetica (1)

H. Yu, B. Ong, “Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings,” Photosynthetica 41(3), 349–355 (2003).
[CrossRef]

Physiol. Plant. (1)

N. G. Bukhov, I. S. Drozdova, V. V. Bondar, A. T. Mokronosov, “Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate,” Physiol. Plant. 85(4), 632–638 (1992).
[CrossRef]

Plant Cell Physiol. (1)

K. Inada, “Action spectra for photosynthesis in higher plants,” Plant Cell Physiol. 17, 355–365 (1976).

Plant Physiol. (2)

N. R. Bulley, C. D. Nelson, E. B. Tregunna, “Photosynthesis: action spectra for leaves in normal and low oxygen,” Plant Physiol. 44(5), 678–684 (1969).
[CrossRef] [PubMed]

J. B. Clark, G. R. Lister, “Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements,” Plant Physiol. 55(2), 401–406 (1975).
[CrossRef] [PubMed]

Planta (1)

K. Humbeck, B. Hoffmann, H. Senger, “Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus,” Planta 173(2), 205–212 (1988).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. A. Mooney, C. Field, C. V. Yanes, C. Chu, “Environmental controls on stomatal conductance in a shrub of the humid tropics,” Proc. Natl. Acad. Sci. U.S.A. 80(5), 1295–1297 (1983).
[CrossRef] [PubMed]

Radiat. Meas. (1)

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, J. Schneider, “Quantum yield of Eu2+ emission in (Ca1−xSrx)S:Eu light emitting diode converter at 20–420 K,” Radiat. Meas. 45(3-6), 350–352 (2009).
[CrossRef]

Sci. Hortic. (Amsterdam) (1)

A. Andersen, “Comparison of fluorescent lamps as an energy source for production of tomato plants in a controlled environment,” Sci. Hortic. (Amsterdam) 28(1-2), 11–18 (1986).
[CrossRef]

Other (5)

L. Taiz and E. Zeiger, “Photosynthesis: the light reactions,” in Plant Physiology (Sinauer Associates, Inc., 2006), pp. 126–158.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

E. Danielson, A. Ellens, F. Jermann, W. Rossner, M. Devenney, D. Giaquinta, and M. Kobusch, “Light emitting device for generating specific colored light, including white light,” US Patent no. 6,850,002 B2 (2005).

S. Lian, “Ultramicro/nano solar dual conversion material, and its preparing method and use. Chin. Patent application. no. CN 1935937 A (2007).

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D.-P. Häder, J. Schneider, L. Wondraczek, A. Winnacker, and C. J. Brabec, “Red-emitting Ca(1-x)SrxS:Eu2+ phosphors as light converters for plant-growth applications. MRS Proc. 1342, mrss11-1342-v04-04 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the set-up for assessment of the photosynthetic activity: 1 - metal halide lamps, 2 - dichroic filters, 3 - water shielding, 4 - intact leaves of S. o. fixed on a sponge, 5 - C- or R-foil, 6 - CO2/humidity/temperature sensors, 7 - ventilation fan, 8 - gas inlet/outlet for compressed air through a water bottle, 9 - spectrometric probe, 10 –data logger.

Fig. 2
Fig. 2

PPFD spectra in the presence of the R-foil and the C-foil, respectively, in comparison to that of the primary incident light. For clarity, the intensity of the latter was divided by factor of 20.

Fig. 3
Fig. 3

Calculated spectra of the effective incident light, derived from multiplication of the PPFD spectra of the C- and R-foil, respectively, with the absorption spectrum of the S.o. chloroplasts. The inset shows the absorption spectrum of the S. o. chloroplasts.

Fig. 4
Fig. 4

Incident PPFD in the reaction cell (left axis) and absorbed fraction of PPFD (right axis) in the presence of C- and R-foil, respectively, as a function of primary incident photon flux density PFD.

Fig. 5
Fig. 5

(a) CO2 concentration inside the reaction cell recorded over time in the presence of C- and R-foil, respectively. Data in (a) was adopted from Ref [25]. (b) Specific CO2 assimilation rate in the presence of C. and R-foil, respectively, under various primary photon flux densities. The dashed lines represent fits of the data to a Levenberg-Marquardt function, Eq. (1).

Fig. 6
Fig. 6

CO2 concentration in the presence of the C-foil under various primary photon flux densities as a function of time.

Tables (2)

Tables Icon

Table 1 Integrated fractions of PPFD in the presence of the R-foil and the C-foil, respectively, for selected spectral regions and relative to the total PPFD integrated over the full spectrum (%).

Tables Icon

Table 2 Integrated absorbed PPFD fraction in the presence of the R-foil and the C-foil, respectively, for selected spectral regions and relative to the total PPFD integrated over the full spectrum (%).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P x = P m I 0 K + I 0 R x ,

Metrics