Abstract

Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker, R. W. Terhune, C. M. Savage, “Optical third harmonic generation,” 3rd Int.Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).
  2. P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–522 (1994).
    [CrossRef]
  3. T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
    [CrossRef]
  4. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
    [CrossRef]
  5. J. D. Dale, P. R. Smy and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE 780329 (1978).
  6. J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010).
    [CrossRef]
  7. M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engine applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
    [CrossRef]
  8. C. Morgan, “Laser-Induced Breakdown of Gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
    [CrossRef]
  9. S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
    [CrossRef]
  10. H. Kopecek, E. Wintner, M. Lackner, F. Winter, and A. Hultqvist, “Laser-stimulated Ignition in a Homogeneous Charge Compression Ignition Engine,” SAE Technical Paper 2004–01–0937 (2004).
    [CrossRef]
  11. Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000).
    [CrossRef]
  12. J. D. Mullett, “Laser-Induced Ignition Systems for Gasoline Automotive Engines,” PhD Thesis, University of Liverpool (2009).
  13. R. D. Dodd, “Laser Ignition of an Internal Combustion Engine,” PhD Thesis, Univ. of Liverpool (2007).
  14. T. X. Phuoc, “Laser-induced spark ignition: fundamentals and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
    [CrossRef]
  15. J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
    [CrossRef]
  16. M. H. Morsy, S. H. Chung, “Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture,” Exp. Therm. Fluid Sci. 27(4), 491–497 (2003).
    [CrossRef]
  17. H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
    [CrossRef]
  18. J. D. Mullett, P. B. Dickinson, A. T. Shenton, G. Dearden and K. G. Watkins “Multi-Cylinder Laser and Spark Ignition in an Ic Gasoline Automotive Engine: A Comparative Study,” SAE 2008–01–0470 (2008).
  19. R. D. Dodd, J. D. Mullett, S. G. Carroll, G. Dearden, A. T. Shenton, K. G. Watkins, G. Triantos, and S. Keen, “Laser Ignition of an IC Test Engine using an Nd:YAG Laser and the Effect of Key Laser Parameters on Engine Combustion Performance,” Proc. Adv. Laser Applications Conf. (ALAC 2005), 104, Laurin (2005).
  20. A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
    [CrossRef]
  21. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  22. J. Shirley, “Engine window soot removal by a laser shock cleaning process,” MSc(Eng) Thesis, Department of Engineering, University of Liverpool (2003).
  23. R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).
  24. J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
    [CrossRef]
  25. P. B. Dickinson, A. T. Shenton, J. D. Mullett, G. Dearden, and A. Scarisbrick, “Prospects for laser ignition in gasoline engine control,” 10th Int. Symp. on Advanced Vehicle Control (AVEC10), 22–26 (2010).
  26. R. Jurgen, Automotive Electronics Handbook (McGraw-Hill, 1995).
  27. R. D. Fruechte, F. E. Coats, and C. H. Folkerts, “Idle speed control for automobiles,” IEEE Proc. 17th ISECE Conference, 467–472 (1983).
  28. L. Mosche, J. G. Stevens, “Photochemical ignition of premixed hydrogen/oxidizer mixtures with excimer lasers,” Combust. Flame 60(2), 195–202 (1985).
    [CrossRef]
  29. B. E. Forch, A. W. Miziolek, “Laser-based ignition of H2/02 and D2/02 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm,” Combust. Flame 85(1-2), 254–262 (1985).
    [CrossRef]
  30. T. X. Phuoc, C. M. White, “Experimental studies of the absorption and emissions from laser-induced spark in combustible gases,” Opt. Commun. 181(4-6), 353–359 (2000).
    [CrossRef]
  31. J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
    [CrossRef]
  32. R. Tambay, R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06μm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
    [CrossRef]
  33. D. L. A. McIntyre, “Laser spark plug ignition system for a stationary lean-burn natural gas reciprocating engine,” PhD Dissertation, West Virginia University (2007).
  34. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [CrossRef]
  35. G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [CrossRef]
  36. J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
    [CrossRef]
  37. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [CrossRef]
  38. H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
    [CrossRef]
  39. T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
    [CrossRef]
  40. S. Joshi, A. P. Yalin, A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
    [CrossRef] [PubMed]
  41. Y. Matsuura, G. Takada, T. Yamamoto, Y.-W. Shi, M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41(3), 442–445 (2002).
    [CrossRef] [PubMed]
  42. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30(16), 2083–2085 (2005).
    [CrossRef] [PubMed]
  43. X.-H. Zhao, G.-C. Shan, Q. Yang, B. Yang, Y. Gao, “Optical interrupter for high peak power transfer in laser initiation systems,” Appl. Opt. 49(31), 6189–6195 (2010).
    [CrossRef]
  44. F. Ferioli, P. V. Puzinauskas, S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57(9), 1183–1189 (2003).
    [CrossRef] [PubMed]
  45. S. Joshi, D. B. Olsen, C. Dumitrescu, P. V. Puzinauskas, A. P. Yalin, “Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines,” Appl. Spectrosc. 63(5), 549–554 (2009).
    [CrossRef] [PubMed]
  46. N. Pavel, M. Tsunekane, T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]

2012 (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engine applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[CrossRef]

2011 (1)

2010 (3)

X.-H. Zhao, G.-C. Shan, Q. Yang, B. Yang, Y. Gao, “Optical interrupter for high peak power transfer in laser initiation systems,” Appl. Opt. 49(31), 6189–6195 (2010).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010).
[CrossRef]

2009 (3)

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

S. Joshi, D. B. Olsen, C. Dumitrescu, P. V. Puzinauskas, A. P. Yalin, “Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines,” Appl. Spectrosc. 63(5), 549–554 (2009).
[CrossRef] [PubMed]

2007 (6)

S. Joshi, A. P. Yalin, A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
[CrossRef] [PubMed]

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

2006 (2)

T. X. Phuoc, “Laser-induced spark ignition: fundamentals and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[CrossRef]

S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
[CrossRef]

2005 (3)

A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
[CrossRef]

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
[CrossRef]

A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30(16), 2083–2085 (2005).
[CrossRef] [PubMed]

2004 (1)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

2003 (3)

M. H. Morsy, S. H. Chung, “Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture,” Exp. Therm. Fluid Sci. 27(4), 491–497 (2003).
[CrossRef]

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

F. Ferioli, P. V. Puzinauskas, S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57(9), 1183–1189 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (3)

T. X. Phuoc, C. M. White, “Experimental studies of the absorption and emissions from laser-induced spark in combustible gases,” Opt. Commun. 181(4-6), 353–359 (2000).
[CrossRef]

T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[CrossRef]

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000).
[CrossRef]

1998 (1)

J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

1994 (1)

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–522 (1994).
[CrossRef]

1991 (1)

R. Tambay, R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06μm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[CrossRef]

1985 (2)

L. Mosche, J. G. Stevens, “Photochemical ignition of premixed hydrogen/oxidizer mixtures with excimer lasers,” Combust. Flame 60(2), 195–202 (1985).
[CrossRef]

B. E. Forch, A. W. Miziolek, “Laser-based ignition of H2/02 and D2/02 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm,” Combust. Flame 85(1-2), 254–262 (1985).
[CrossRef]

1975 (1)

C. Morgan, “Laser-Induced Breakdown of Gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[CrossRef]

Agarwal, A. K.

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

Alexander, D. R.

J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Al-Janabi, A. H.

A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
[CrossRef]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Buckley, S. G.

Byer, R. L.

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Carroll, S.

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Carroll, S. D.

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

Chen, Y. L.

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000).
[CrossRef]

Chung, S. H.

M. H. Morsy, S. H. Chung, “Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture,” Exp. Therm. Fluid Sci. 27(4), 491–497 (2003).
[CrossRef]

Dearden, G.

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

DeFoort, M.

Digonnet, M. J. F.

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Dodd, R. D.

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

Dumitrescu, C.

Fejer, M. M.

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Ferioli, F.

Forch, B. E.

B. E. Forch, A. W. Miziolek, “Laser-based ignition of H2/02 and D2/02 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm,” Combust. Flame 85(1-2), 254–262 (1985).
[CrossRef]

Franz, G.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Galvanauskas, A.

Gao, Y.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Hum, D. S.

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Ikesue, A.

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Joshi, S.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Keen, S.

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Kofler, H.

J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

Kopecek, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Kroupa, G.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Lackner, M.

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

Lewis, J. W. L.

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000).
[CrossRef]

Ma, J. X.

J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Maier, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, C. M. Savage, “Optical third harmonic generation,” 3rd Int.Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

Matsuura, Y.

Miyagi, M.

Miziolek, A. W.

B. E. Forch, A. W. Miziolek, “Laser-based ignition of H2/02 and D2/02 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm,” Combust. Flame 85(1-2), 254–262 (1985).
[CrossRef]

Morgan, C.

C. Morgan, “Laser-Induced Breakdown of Gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[CrossRef]

Morsy, M. H.

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engine applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[CrossRef]

M. H. Morsy, S. H. Chung, “Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture,” Exp. Therm. Fluid Sci. 27(4), 491–497 (2003).
[CrossRef]

Mosche, L.

L. Mosche, J. G. Stevens, “Photochemical ignition of premixed hydrogen/oxidizer mixtures with excimer lasers,” Combust. Flame 60(2), 195–202 (1985).
[CrossRef]

Mullett, J.

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Mullett, J. D.

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

Olsen, D. B.

Parigger, C.

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000).
[CrossRef]

Pavel, N.

Phuoc, T. X.

T. X. Phuoc, “Laser-induced spark ignition: fundamentals and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[CrossRef]

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
[CrossRef]

T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[CrossRef]

T. X. Phuoc, C. M. White, “Experimental studies of the absorption and emissions from laser-induced spark in combustible gases,” Opt. Commun. 181(4-6), 353–359 (2000).
[CrossRef]

Poulain, D. E.

J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Puzinauskas, P. V.

Ranner, H.

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

Reider, G.

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Ronney, P. D.

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–522 (1994).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, C. M. Savage, “Optical third harmonic generation,” 3rd Int.Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

Scarisbrick, A. D.

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

Shan, G.-C.

Shenton, A. T.

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

Shenton, T.

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Shi, Y.-W.

Stevens, J. G.

L. Mosche, J. G. Stevens, “Photochemical ignition of premixed hydrogen/oxidizer mixtures with excimer lasers,” Combust. Flame 60(2), 195–202 (1985).
[CrossRef]

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Taira, T.

N. Pavel, M. Tsunekane, T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Takada, G.

Tambay, R.

R. Tambay, R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06μm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[CrossRef]

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Tauer, J.

J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, C. M. Savage, “Optical third harmonic generation,” 3rd Int.Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

Tewari, P. K.

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

Thareja, R. K.

R. Tambay, R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06μm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[CrossRef]

Tretyakov, P. K.

S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
[CrossRef]

Triantos, G.

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Tsunekane, M.

N. Pavel, M. Tsunekane, T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Tupikin, A. V.

S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
[CrossRef]

Vorontsov, S. S.

S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
[CrossRef]

Watkins, K.

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Watkins, K. G.

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

White, C. M.

T. X. Phuoc, C. M. White, “Experimental studies of the absorption and emissions from laser-induced spark in combustible gases,” Opt. Commun. 181(4-6), 353–359 (2000).
[CrossRef]

Williams, C. J.

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

Willson, B.

Winkelhofer, E.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Winter, F.

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Wintner, E.

J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Wisdom, J. A.

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Yalin, A. P.

Yamamoto, T.

Yang, B.

Yang, Q.

Zhao, X.-H.

Zudov, V. N.

S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (2)

Combust. Flame (5)

T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000).
[CrossRef]

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

L. Mosche, J. G. Stevens, “Photochemical ignition of premixed hydrogen/oxidizer mixtures with excimer lasers,” Combust. Flame 60(2), 195–202 (1985).
[CrossRef]

B. E. Forch, A. W. Miziolek, “Laser-based ignition of H2/02 and D2/02 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm,” Combust. Flame 85(1-2), 254–262 (1985).
[CrossRef]

J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[CrossRef]

Exp. Therm. Fluid Sci. (2)

M. H. Morsy, S. H. Chung, “Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture,” Exp. Therm. Fluid Sci. 27(4), 491–497 (2003).
[CrossRef]

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

J. Appl. Phys. (1)

R. Tambay, R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06μm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009).
[CrossRef]

J. Phys. D (1)

J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007).
[CrossRef]

J. Quantitative Spectrosc. Radiative Transf. (1)

Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000).
[CrossRef]

Laser & Photon. Rev. (1)

J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010).
[CrossRef]

Laser Phys. Lett. (2)

A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Lasers Engineering (1)

R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).

Opt. Commun. (2)

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
[CrossRef]

T. X. Phuoc, C. M. White, “Experimental studies of the absorption and emissions from laser-induced spark in combustible gases,” Opt. Commun. 181(4-6), 353–359 (2000).
[CrossRef]

Opt. Eng. (3)

H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[CrossRef]

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–522 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

T. X. Phuoc, “Laser-induced spark ignition: fundamentals and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engine applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[CrossRef]

Rep. Prog. Phys. (1)

C. Morgan, “Laser-Induced Breakdown of Gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[CrossRef]

Thermophys. Aeromech. (1)

S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006).
[CrossRef]

Other (13)

H. Kopecek, E. Wintner, M. Lackner, F. Winter, and A. Hultqvist, “Laser-stimulated Ignition in a Homogeneous Charge Compression Ignition Engine,” SAE Technical Paper 2004–01–0937 (2004).
[CrossRef]

P. D. Maker, R. W. Terhune, C. M. Savage, “Optical third harmonic generation,” 3rd Int.Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

J. D. Dale, P. R. Smy and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE 780329 (1978).

J. D. Mullett, “Laser-Induced Ignition Systems for Gasoline Automotive Engines,” PhD Thesis, University of Liverpool (2009).

R. D. Dodd, “Laser Ignition of an Internal Combustion Engine,” PhD Thesis, Univ. of Liverpool (2007).

J. D. Mullett, P. B. Dickinson, A. T. Shenton, G. Dearden and K. G. Watkins “Multi-Cylinder Laser and Spark Ignition in an Ic Gasoline Automotive Engine: A Comparative Study,” SAE 2008–01–0470 (2008).

R. D. Dodd, J. D. Mullett, S. G. Carroll, G. Dearden, A. T. Shenton, K. G. Watkins, G. Triantos, and S. Keen, “Laser Ignition of an IC Test Engine using an Nd:YAG Laser and the Effect of Key Laser Parameters on Engine Combustion Performance,” Proc. Adv. Laser Applications Conf. (ALAC 2005), 104, Laurin (2005).

D. L. A. McIntyre, “Laser spark plug ignition system for a stationary lean-burn natural gas reciprocating engine,” PhD Dissertation, West Virginia University (2007).

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

J. Shirley, “Engine window soot removal by a laser shock cleaning process,” MSc(Eng) Thesis, Department of Engineering, University of Liverpool (2003).

P. B. Dickinson, A. T. Shenton, J. D. Mullett, G. Dearden, and A. Scarisbrick, “Prospects for laser ignition in gasoline engine control,” 10th Int. Symp. on Advanced Vehicle Control (AVEC10), 22–26 (2010).

R. Jurgen, Automotive Electronics Handbook (McGraw-Hill, 1995).

R. D. Fruechte, F. E. Coats, and C. H. Folkerts, “Idle speed control for automobiles,” IEEE Proc. 17th ISECE Conference, 467–472 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ignition plasma light emission: (a) temporal profile from a spark plug with 92 mJ energy & (b) from a focused 10 mJ, 6 ns Nd:YAG laser; (c) Laser (top) & electric (bottom) spark [12].

Fig. 2
Fig. 2

Schematic of one system developed at UoL for LI of a 4-cylinder PFI petrol engine [18].

Fig. 3
Fig. 3

Photographs of UoL LI system, as illustrated in Fig. 2: (a) Laser and optics train (b) Engine mounted turning mirrors; (c) Optical plug window removed after engine LI testing [18].

Fig. 4
Fig. 4

(a) Comparison of COVIMEP variation for LI and SI: (a) over a range of ignition timings at 1500 rpm, 2.62 bar BMEP in a GDI SCE; (b) over a range of loads at 1500 rpm, and ignition timing for MBT in a GDI SCE (stoichiometric mixture, λ = 1, in both cases) [25].

Fig. 5
Fig. 5

(a) Mass fraction burn curves for LI and SI at 1500 rpm, 2.62 bar BMEP, λ = 1, with the ignition timing for LI and SI at 36° BTDC; (b) Comparison of COVIMEP variation for LI and SI for a range of ignition angle timings at 1500 rpm, λ = 1.3, 2.62 bar BMEP in a GDI SCE [25].

Fig. 6
Fig. 6

Types of optical fibre considered for LI, from left to right: step index; graded index; multi-layer hollow glass; hollow core; photonic crystal (or band-gap).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d min = 4f M 2 λ 0 π D L
IMEP= W i V d
W i = PV
C O V I M E P = σ I M E P I M E P

Metrics