Abstract

A microwave-enhanced plasma generation technique was combined with laser-induced ignition to improve ignition characteristics. A locally intensified microwave field was formed near the laser-induced breakdown plasma. As the plasma absorbed the microwaves, the plasma emission intensity increased. The plasma lifetime could be controlled by changing the microwave oscillation duration. Furthermore, the microwave-enhanced laser-induced breakdown plasma improved the minimum ignition energy of the methane/air pre-mixture with just a small amount of absorbed microwave energy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanoue, E. Hotta, Y. Moriyoshi, “Enhancement of ignition characteristics of lean premixed hydrocarbon-air mixtures by repetitive pulse discharges,” Int. J. Engine Res. 10(6), 399–407 (2009).
    [CrossRef]
  2. T. Shiraishi, T. Urushihara, M. Gundersen, “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition,” J. Phys. D Appl. Phys. 42(13), 135208 (2009).
    [CrossRef]
  3. T. Alger, J. Gingrich, B. Mangold, and C. Roberts, “A continuous discharge ignition system for EGR limit extension in SI engines,” SAE Technical Paper 2011–01–0661 (2011).
    [CrossRef]
  4. J. L. Beduneau, Y. Ikeda, “Application of laser ignition on laminar flame front investigation,” Exp. Fluids 36(1), 108–113 (2004).
    [CrossRef]
  5. J. L. Beduneau, Y. Ikeda, “Spatially characterization of laser induced sparks in air,” J. Quant. Spectrosc. Ra. 84(2), 123–139 (2004).
    [CrossRef]
  6. J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
    [CrossRef]
  7. N. Pavel, M. Tsunekane, T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]
  8. Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine (Part I: Concept of plasma combustion and plasma generation technique),” SAE Technical Paper 2009–01–1050 (2009).
    [CrossRef]
  9. A. DeFilippo, S. Saxena, V. Rapp, R. Dibble, J. Y. Chen, A. Nishiyama, and Y. Ikeda, “Extending the lean limit of gasoline using a microwave-assisted spark plug,” SAE Technical Paper 2011–01–0663 (2011).
    [CrossRef]
  10. A. Nishiyama and Y. Ikeda, “Improvement of lean limit and fuel consumption using microwave plasma ignition technology,” SAE Technical Paper 2012–01–1139 (2012).
    [CrossRef]
  11. V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
    [CrossRef]
  12. B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
    [CrossRef]
  13. J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
    [CrossRef]
  14. Y. Ikeda and M. Kaneko, “Microwave enhanced laser induced breakdown spectroscopy,” 14th Int. Symp. On Appl. Laser Techniques to Fluid Mechanics, (2008).
  15. Y. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
    [CrossRef]
  16. Y. Ikeda, R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
    [CrossRef] [PubMed]
  17. H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009–01–0948 (2009).

2013 (1)

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

2012 (2)

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Y. Ikeda, R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (2)

J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
[CrossRef]

Y. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

2009 (3)

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

K. Tanoue, E. Hotta, Y. Moriyoshi, “Enhancement of ignition characteristics of lean premixed hydrocarbon-air mixtures by repetitive pulse discharges,” Int. J. Engine Res. 10(6), 399–407 (2009).
[CrossRef]

T. Shiraishi, T. Urushihara, M. Gundersen, “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition,” J. Phys. D Appl. Phys. 42(13), 135208 (2009).
[CrossRef]

2004 (2)

J. L. Beduneau, Y. Ikeda, “Application of laser ignition on laminar flame front investigation,” Exp. Fluids 36(1), 108–113 (2004).
[CrossRef]

J. L. Beduneau, Y. Ikeda, “Spatially characterization of laser induced sparks in air,” J. Quant. Spectrosc. Ra. 84(2), 123–139 (2004).
[CrossRef]

Baudelet, M.

Y. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

Beduneau, J. L.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

J. L. Beduneau, Y. Ikeda, “Spatially characterization of laser induced sparks in air,” J. Quant. Spectrosc. Ra. 84(2), 123–139 (2004).
[CrossRef]

J. L. Beduneau, Y. Ikeda, “Application of laser ignition on laminar flame front investigation,” Exp. Fluids 36(1), 108–113 (2004).
[CrossRef]

Chen, J. Y.

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

DeFilippo, A.

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Dibble, R.

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

Dibble, R. W.

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Dogariu, A.

J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
[CrossRef]

Gundersen, M.

T. Shiraishi, T. Urushihara, M. Gundersen, “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition,” J. Phys. D Appl. Phys. 42(13), 135208 (2009).
[CrossRef]

Hotta, E.

K. Tanoue, E. Hotta, Y. Moriyoshi, “Enhancement of ignition characteristics of lean premixed hydrocarbon-air mixtures by repetitive pulse discharges,” Int. J. Engine Res. 10(6), 399–407 (2009).
[CrossRef]

Ikeda, Y.

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Y. Ikeda, R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
[CrossRef] [PubMed]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

J. L. Beduneau, Y. Ikeda, “Spatially characterization of laser induced sparks in air,” J. Quant. Spectrosc. Ra. 84(2), 123–139 (2004).
[CrossRef]

J. L. Beduneau, Y. Ikeda, “Application of laser ignition on laminar flame front investigation,” Exp. Fluids 36(1), 108–113 (2004).
[CrossRef]

Kawahara, N.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

Liu, Y.

Y. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

Michael, J. B.

J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
[CrossRef]

Miles, R. B.

J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
[CrossRef]

Moon, A.

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Moriyoshi, Y.

K. Tanoue, E. Hotta, Y. Moriyoshi, “Enhancement of ignition characteristics of lean premixed hydrocarbon-air mixtures by repetitive pulse discharges,” Int. J. Engine Res. 10(6), 399–407 (2009).
[CrossRef]

Nakayama, T.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

Nishiyama, A.

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Pavel, N.

Rapp, V.

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Richardson, M.

Y. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

Saxena, S.

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

Shiraishi, T.

T. Shiraishi, T. Urushihara, M. Gundersen, “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition,” J. Phys. D Appl. Phys. 42(13), 135208 (2009).
[CrossRef]

Shneider, M. N.

J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
[CrossRef]

Taira, T.

Tanoue, K.

K. Tanoue, E. Hotta, Y. Moriyoshi, “Enhancement of ignition characteristics of lean premixed hydrocarbon-air mixtures by repetitive pulse discharges,” Int. J. Engine Res. 10(6), 399–407 (2009).
[CrossRef]

Tomita, E.

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

Tsunekane, M.

Tsuruoka, R.

Urushihara, T.

T. Shiraishi, T. Urushihara, M. Gundersen, “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition,” J. Phys. D Appl. Phys. 42(13), 135208 (2009).
[CrossRef]

Wolk, B.

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

Appl. Opt. (1)

Combust. Flame (2)

B. Wolk, A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame 160(7), 1225–1234 (2013).
[CrossRef]

J. L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, “Laser-induced radical generation and evolution to a self-sustaining flame,” Combust. Flame 156(3), 642–656 (2009).
[CrossRef]

Exp. Fluids (1)

J. L. Beduneau, Y. Ikeda, “Application of laser ignition on laminar flame front investigation,” Exp. Fluids 36(1), 108–113 (2004).
[CrossRef]

Int. J. Engine Res. (1)

K. Tanoue, E. Hotta, Y. Moriyoshi, “Enhancement of ignition characteristics of lean premixed hydrocarbon-air mixtures by repetitive pulse discharges,” Int. J. Engine Res. 10(6), 399–407 (2009).
[CrossRef]

J. Anal. At. Spectrom. (1)

Y. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

J. Appl. Phys. (1)

J. B. Michael, A. Dogariu, M. N. Shneider, R. B. Miles, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys. 108(9), 093308 (2010).
[CrossRef]

J. Combust. (1)

V. Rapp, A. DeFilippo, S. Saxena, J. Y. Chen, R. W. Dibble, A. Nishiyama, A. Moon, Y. Ikeda, “Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug,” J. Combust. 2012, 927081 (2012).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. Shiraishi, T. Urushihara, M. Gundersen, “A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition,” J. Phys. D Appl. Phys. 42(13), 135208 (2009).
[CrossRef]

J. Quant. Spectrosc. Ra. (1)

J. L. Beduneau, Y. Ikeda, “Spatially characterization of laser induced sparks in air,” J. Quant. Spectrosc. Ra. 84(2), 123–139 (2004).
[CrossRef]

Opt. Express (1)

Other (6)

Y. Ikeda, A. Nishiyama, Y. Wachi, and M. Kaneko, “Research and development of microwave plasma combustion engine (Part I: Concept of plasma combustion and plasma generation technique),” SAE Technical Paper 2009–01–1050 (2009).
[CrossRef]

A. DeFilippo, S. Saxena, V. Rapp, R. Dibble, J. Y. Chen, A. Nishiyama, and Y. Ikeda, “Extending the lean limit of gasoline using a microwave-assisted spark plug,” SAE Technical Paper 2011–01–0663 (2011).
[CrossRef]

A. Nishiyama and Y. Ikeda, “Improvement of lean limit and fuel consumption using microwave plasma ignition technology,” SAE Technical Paper 2012–01–1139 (2012).
[CrossRef]

T. Alger, J. Gingrich, B. Mangold, and C. Roberts, “A continuous discharge ignition system for EGR limit extension in SI engines,” SAE Technical Paper 2011–01–0661 (2011).
[CrossRef]

Y. Ikeda and M. Kaneko, “Microwave enhanced laser induced breakdown spectroscopy,” 14th Int. Symp. On Appl. Laser Techniques to Fluid Mechanics, (2008).

H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009–01–0948 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of experimental setup

Fig. 2
Fig. 2

Schematic diagram of microwave system and antenna

Fig. 3
Fig. 3

Plasma emission intensity at 308 nm with and without microwave enhancement. (a) Whole duration of microwave oscillation. (b) Just after breakdown (t = 0~50 μs).

Fig. 4
Fig. 4

High speed images of microwave enhanced laser-induced breakdown

Fig. 5
Fig. 5

Plasma emission intensity and microwave power. (a) Input and reflection microwave power. (b) Absorbed microwave power by plasma.

Fig. 6
Fig. 6

Breakdown threshold level and minimum ignition energy without microwave condition

Fig. 7
Fig. 7

Relationship between microwave oscillation and ignition success rate. (a) Microwave oscillation duration. (b) Microwave absorbed energy.

Fig. 8
Fig. 8

Minimum ignition energy improvement by microwave enhanced laser-induced breakdown plasma

Metrics