Abstract

Photon absorption of single nanowire solar cells can be modulated by metallic core. Silver core was integrated into α-Si single nanowire solar cells (SNSCs), and the influence of silver core position on enhanced photon absorption efficiency and the short circuit current (Jsc) was investigated. The finite-difference time domain (FDTD) method was used to rigorously solve Maxwell’s equations in two dimensions. The Jsc decreases when the silver core is integrated into the center of nanowire. However, the photon absorption efficiencies and Jsc could be enhanced by tuning the core position in the nanowire. Jsc enhancement of 21.4% is achieved when nanowire radius R is 190 nm, core radius r is 30 nm, the silver core is located in the negative Y-axis and the distance from the center of silver core to the origin d is 102 nm under realistic solar illumination.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  2. E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  3. L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
    [CrossRef] [PubMed]
  4. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [CrossRef] [PubMed]
  5. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
    [CrossRef]
  6. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
    [CrossRef] [PubMed]
  7. R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [CrossRef]
  8. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  9. C. Lin, M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
    [CrossRef]
  10. S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
    [CrossRef] [PubMed]
  11. Y. H. Zhan, J. P. Zhao, C. H. Zhou, M. Alemayehu, Y. P. Li, Y. Li, “Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core,” Opt. Express 20(10), 11506–11516 (2012).
    [CrossRef] [PubMed]
  12. FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com .
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  14. ASTM, “Reference solar spectral irradiance: AM 1.5 Spectra,” http://rredc.nreal.gov/solar/spectra/am1.5 .
  15. W. F. Liu, J. I. Oh, W. Z. Shen, “Light trapping in single coaxial nanowires for photovoltaic applications,” IEEE Electron Device Lett. 32(1), 45–47 (2011).
    [CrossRef]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  17. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A, Gen. Phys. 81(5), 053818 (2010).
    [CrossRef]
  18. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
    [CrossRef]

2012

2011

W. F. Liu, J. I. Oh, W. Z. Shen, “Light trapping in single coaxial nanowires for photovoltaic applications,” IEEE Electron Device Lett. 32(1), 45–47 (2011).
[CrossRef]

S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
[CrossRef] [PubMed]

2010

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

C. Lin, M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A, Gen. Phys. 81(5), 053818 (2010).
[CrossRef]

2009

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

2008

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

2007

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

2004

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Alemayehu, M.

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Brittman, S.

S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Clemens, B. M.

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Gao, H.

S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
[CrossRef] [PubMed]

Gargas, D.

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Garnett, E.

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Garnett, E. C.

S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
[CrossRef] [PubMed]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Grundmann, M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Kaidashev, E. M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Li, Y.

Li, Y. P.

Lin, C.

C. Lin, M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

Liu, W. F.

W. F. Liu, J. I. Oh, W. Z. Shen, “Light trapping in single coaxial nanowires for photovoltaic applications,” IEEE Electron Device Lett. 32(1), 45–47 (2011).
[CrossRef]

Lorenz, M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

Miroshnichenko, E.

E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A, Gen. Phys. 81(5), 053818 (2010).
[CrossRef]

Nobis, T.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

Oh, J. I.

W. F. Liu, J. I. Oh, W. Z. Shen, “Light trapping in single coaxial nanowires for photovoltaic applications,” IEEE Electron Device Lett. 32(1), 45–47 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Park, J.-S.

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Plessen, G. v.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Povinelli, M. L.

C. Lin, M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Rahm, A.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Shen, W. Z.

W. F. Liu, J. I. Oh, W. Z. Shen, “Light trapping in single coaxial nanowires for photovoltaic applications,” IEEE Electron Device Lett. 32(1), 45–47 (2011).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

Yan, R.

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yang, P.

S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
[CrossRef] [PubMed]

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Zhan, Y. H.

Zhao, J. P.

Zhou, C. H.

Appl. Phys. Lett.

C. Lin, M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

Appl. Phys. Lett.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

IEEE Electron Device Lett.

W. F. Liu, J. I. Oh, W. Z. Shen, “Light trapping in single coaxial nanowires for photovoltaic applications,” IEEE Electron Device Lett. 32(1), 45–47 (2011).
[CrossRef]

Nano Lett.

S. Brittman, H. Gao, E. C. Garnett, P. Yang, “Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal,” Nano Lett. 11(12), 5189–5195 (2011).
[CrossRef] [PubMed]

Nano Lett.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Nat. Photonics

R. Yan, D. Gargas, P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Nat. Mater.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, J. S. White, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. A, Gen. Phys.

E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A, Gen. Phys. 81(5), 053818 (2010).
[CrossRef]

Phys. Rev. Lett.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93(10), 103903 (2004).
[CrossRef] [PubMed]

Phys. Stat. Sol. (a)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Stat. Sol. (a) 205(12), 2844–2861 (2008).
[CrossRef]

Other

FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

ASTM, “Reference solar spectral irradiance: AM 1.5 Spectra,” http://rredc.nreal.gov/solar/spectra/am1.5 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the simulation model.

Fig. 2
Fig. 2

Contour map of Jsc enhancement in SNSCs with silver core located in the center of nanowire as a function of nanowire radius R and core radius r for (a) p-polarized, (b) s-polarized and (c) non-polarized sunlight.

Fig. 3
Fig. 3

Contour maps of Qabs in the SNSCs as a function of illumination wavelength and nanowire radius R. The silver core radius, r, is 36 nm. (a) without silver core, (b) Qabs in the α-Si nanowire and (c) Qabs in the silver core for p-polarized light. (d) without silver core, (e) Qabs in the α-Si nanowire and (f) Qabs in the silver core for s-polarized light. The absorption efficiency Qabs in the SNSCs (g) p-polarized and (h) s-polarized. The nanowire radius, R, is 130 nm and the silver core radius, r, is 36 nm. They correspond to the parameters for maximum absorption enhancement in the SNSCs of [11].

Fig. 4
Fig. 4

H-field distribution in SNSCs. The nanowire radius, R, is 130 nm. The core radius, r, is 36 nm. The color is not in scale, which is just to show the steady mode. Sub-graph 1–6 for without core and 7–9 for with core under p-polarized illumination; sub-graph 10–15 for without core and 16–21 for with core under s-polarized illumination. The resonant wavelength marked on the top of each sub-graph.

Fig. 5
Fig. 5

Contour maps of Jsc enhancement in SNSCs as a function of core radius r and the ratio p, here p varies from −1 to 1, corresponding to the core moves from bottom to up along the Y-axis. (a) p-polarized, (b) s-polarized and (c) non-polarized. The nanowire radius, R, is 190 nm.

Fig. 6
Fig. 6

(a) The absorption efficiency Qabs in the SNSCs under p-polarized illumination. The nanowire radius, R, is 190 nm, the silver core radius, r, is 20 nm, and the ratio, p, is −0.6. (i. e., silver core located in the negative Y-axis and the distance from the center of silver core to the origin d=102 nm.) (b)–(f) H-field distribution in SNSCs at the resonant peak labeled from TE1 to TE5, respectively. The color is not in scale, which is just to show the steady mode.

Fig. 7
Fig. 7

(a) The absorption efficiency Qabs in the SNSCs under s-polarized illumination. The nanowire radius, R, is 190 nm, the silver core radius, r, is 130 nm, and the ratio, p, is 0.9. (i. e., silver core located in the positive Y-axis and the distance from the center of silver core to the origin d=54 nm.) (b)–(g) E-field distribution in SNSCs at the resonant peak labeled from TM1 to TM6, respectively. The color is not in scale, which is just to show the steady mode.

Fig. 8
Fig. 8

Maximum of Jsc enhancement as a function of radius of SNSCs (circle points in blue). (a) p-polarized, (b) s-polarized. The left inset is the optimum core radius (diamond points in red) and the right inset is the optimum ratio (square points in green), respectively. The light dotted line in the inset is the linear fitting for the relationship between r and R.

Fig. 9
Fig. 9

Contour maps of Jsc enhancement in SNSCs as a function of d and θ, expressed in polar coordinates. The points on the graph represent the positions of the center of silver core. The nanowire radius, R, is 190 nm. d=(R-r)·p, p varies from 0 to 1. The θ is the angle from the x-axis to d. It varies from −π/2 to π/2. (We only need to compute a half because the structure of SNSCs and light source are symmetric about the Y-axis.) (a) p-polarized, the silver core radius, r, is 20 nm, d varies from 0 to 170 nm; (b) s-polarized, the silver radius, r, is 130 nm. d varies from 0 to 60 nm; (c) non-polarized, the silver radius, r, is 30 nm. d varies from 0 to 160 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J s c = 400 n m 800 n m e λ h c Q abs ( λ ) Φ A M 1.5 ( λ ) d λ

Metrics