Abstract

In upconversion processes, two or more low-energy photons are converted into one higher-energy photon. Besides other applications, upconversion has the potential to decrease sub-band-gap losses in silicon solar cells. Unfortunately, upconverting materials known today show quantum yields, which are too low for this application. In order to improve the upconversion quantum yield, two parameters can be tuned using photonic structures: first, the irradiance can be increased within the structure. This is beneficial, as upconversion is a non-linear process. Second, the rates of the radiative transitions between ionic states within the upconverter material can be altered due to a varied local density of photonic states. In this paper, we present a theoretical model of the impact of a photonic structure on upconversion and test this model in a simulation based analysis of the upconverter material β -NaYF4:20% Er3+ within a dielectric waveguide structure. The simulation combines a finite-difference time-domain simulation model that describes the variations of the irradiance and the change of the local density of photonic states within a photonic structure, with a rate equation model of the upconversion processes. We find that averaged over the investigated structure the upconversion luminescence is increased by a factor of 3.3, and the upconversion quantum yield can be improved in average by a factor of 1.8 compared to the case without the structure for an initial irradiance of 200 Wm−2.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
    [CrossRef] [PubMed]
  2. M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
    [CrossRef]
  3. H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
    [CrossRef] [PubMed]
  4. D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
    [CrossRef]
  5. B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006).
    [CrossRef]
  6. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
    [CrossRef] [PubMed]
  7. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
    [CrossRef]
  8. B. Richards, A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54, 2679–2684 (2007).
    [CrossRef]
  9. J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
    [CrossRef]
  10. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
    [CrossRef]
  11. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
    [CrossRef]
  12. F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
    [CrossRef]
  13. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
    [CrossRef] [PubMed]
  14. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
    [CrossRef] [PubMed]
  15. H. Mertens, A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
    [CrossRef]
  16. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
    [CrossRef]
  17. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
    [CrossRef] [PubMed]
  18. J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
    [CrossRef]
  19. S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).
  20. S. John, T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [CrossRef] [PubMed]
  21. W. L. Vos, A. F. Koenderink, I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
    [CrossRef]
  22. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  23. S. G. Romanov, A. V. Fokin, R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
    [CrossRef]
  24. C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express 20, 10453–10469 (2012).
    [CrossRef] [PubMed]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  26. F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
    [CrossRef]
  27. Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, J. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt. 50, 287–290 (2011).
    [CrossRef] [PubMed]
  28. M. J. A. de Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
    [CrossRef]
  29. H. A. Lopez, P. M. Fauchet, “Erbium emission from porous silicon one-dimensional photonic band gap structures,” Appl. Phys. Lett. 77, 3704–3706 (2000).
    [CrossRef]
  30. C. M. Johnson, P. J. Reece, G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36, 3990–3992 (2011).
    [CrossRef] [PubMed]
  31. C. Johnson, P. Reece, G. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
    [CrossRef]
  32. M. Liscidini, L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar micro-cavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
    [CrossRef]
  33. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, “ χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doublyresonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [CrossRef] [PubMed]
  34. A. Hayat, M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
    [CrossRef]
  35. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [CrossRef]
  36. K. Rivoire, S. Buckley, J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
    [CrossRef] [PubMed]
  37. N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
    [CrossRef]
  38. H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
    [CrossRef]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  40. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995).
    [CrossRef] [PubMed]
  41. J. Nishii, K. Kintaka, T. Nakazawa, “High-efficiency transmission gratings buried in a fused-sio2 glass plate,” Appl. Opt. 43, 1327–1330 (2004).
    [CrossRef] [PubMed]
  42. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
    [CrossRef]
  43. R. E. Thoma, H. Insley, G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5, 1222–9 (1966).
    [CrossRef]
  44. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
    [CrossRef]
  45. M. Fox, Quantum Optics (Oxford University, 2006).
  46. P. Bermel, A. Rodriguez, J. D. Joannopoulos, M. Soljacic, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
    [CrossRef] [PubMed]
  47. C. Hermann, O. Hess, “Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap,” J. Opt. Soc. Am. B 19, 3013–3018 (2002).
    [CrossRef]
  48. J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
    [CrossRef]
  49. J. C. Goldschmidt, Novel solar cell concepts(Verlag Dr. Hut, München, 2010).
  50. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
    [CrossRef]
  51. M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
    [CrossRef]
  52. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
    [CrossRef]
  53. P. Andrew, W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
    [CrossRef] [PubMed]
  54. J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.
  55. C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.
  56. K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
    [CrossRef]
  57. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
    [CrossRef]

2013 (2)

2012 (4)

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express 20, 10453–10469 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

2011 (6)

Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, J. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt. 50, 287–290 (2011).
[CrossRef] [PubMed]

C. M. Johnson, P. J. Reece, G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36, 3990–3992 (2011).
[CrossRef] [PubMed]

K. Rivoire, S. Buckley, J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
[CrossRef] [PubMed]

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

2010 (5)

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

2009 (5)

W. L. Vos, A. F. Koenderink, I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[CrossRef]

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
[CrossRef] [PubMed]

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

2008 (3)

D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

A. Hayat, M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

2007 (3)

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, “ χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doublyresonant cavities,” Opt. Express 15, 7303–7318 (2007).
[CrossRef] [PubMed]

B. Richards, A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54, 2679–2684 (2007).
[CrossRef]

P. Bermel, A. Rodriguez, J. D. Joannopoulos, M. Soljacic, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

2006 (3)

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006).
[CrossRef]

H. Mertens, A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

2005 (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
[CrossRef]

2004 (4)

J. Nishii, K. Kintaka, T. Nakazawa, “High-efficiency transmission gratings buried in a fused-sio2 glass plate,” Appl. Opt. 43, 1327–1330 (2004).
[CrossRef] [PubMed]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

M. Liscidini, L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar micro-cavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef] [PubMed]

2003 (1)

M. J. A. de Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
[CrossRef]

2002 (2)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

C. Hermann, O. Hess, “Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap,” J. Opt. Soc. Am. B 19, 3013–3018 (2002).
[CrossRef]

2000 (5)

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

P. Andrew, W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

H. A. Lopez, P. M. Fauchet, “Erbium emission from porous silicon one-dimensional photonic band gap structures,” Appl. Phys. Lett. 77, 3704–3706 (2000).
[CrossRef]

S. G. Romanov, A. V. Fokin, R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[CrossRef]

1999 (1)

J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

1995 (2)

1994 (1)

S. John, T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

1966 (1)

R. E. Thoma, H. Insley, G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5, 1222–9 (1966).
[CrossRef]

Abel, K. A.

Aeberhard, U.

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

Aichele, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

Andreani, L. C.

M. Liscidini, L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar micro-cavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

Andrew, P.

P. Andrew, W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef] [PubMed]

Barnes, W. L.

P. Andrew, W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

Baroughi, M. F.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Bayat, K.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Benson, O.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

P. Bermel, A. Rodriguez, J. D. Joannopoulos, M. Soljacic, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Berry, M. T.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Biner, D.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Blasi, B.

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Blum, C.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

Brüggemann, R.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Buckley, S.

Busch, K.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[CrossRef]

Conibeer, G.

C. Johnson, P. Reece, G. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[CrossRef]

Conibeer, G. J.

Crewett, J.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
[CrossRef]

M. J. A. de Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
[CrossRef]

del Canizo, C.

C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.

Deng, Y.

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

Diem, M.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

Diemeer, M. B. J.

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Eichelkraut, T.

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Fath, P.

C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

H. A. Lopez, P. M. Fauchet, “Erbium emission from porous silicon one-dimensional photonic band gap structures,” Appl. Phys. Lett. 77, 3704–3706 (2000).
[CrossRef]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Fischer, S.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Fleming, J. G.

M. J. A. de Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
[CrossRef]

Foell, C. A.

Fokin, A. V.

S. G. Romanov, A. V. Fokin, R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[CrossRef]

Forberich, K.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

Fox, M.

M. Fox, Quantum Optics (Oxford University, 2006).

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Glunz, S.

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

Glunz, S. W.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Goldschmidt, J.

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

Goldschmidt, J. C.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

J. C. Goldschmidt, Novel solar cell concepts(Verlag Dr. Hut, München, 2010).

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Goldschmidt*, J.

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

Gombert, A.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Güdel, H. U.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Guo, H. C.

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

Hallermann, F.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Hatami, F.

Hayat, A.

A. Hayat, M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

Hebert, G. M.

R. E. Thoma, H. Insley, G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5, 1222–9 (1966).
[CrossRef]

Hehlen, M. P.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Hendriksen, B.

Hermann, C.

Hermle, M.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Herter, B.

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Hess, O.

Ho, P. C.-L.

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

Höhn, O.

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

Hou, W.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Hughes, S.

Hwang, J.-K.

J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Insley, H.

R. E. Thoma, H. Insley, G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5, 1222–9 (1966).
[CrossRef]

Janz, S.

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Jiang, C.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Jiang, T.

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

John, S.

S. John, T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Johnson, C.

C. Johnson, P. Reece, G. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[CrossRef]

Johnson, C. M.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, “ χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doublyresonant cavities,” Opt. Express 15, 7303–7318 (2007).
[CrossRef] [PubMed]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Kintaka, K.

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Knoester, J.

M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
[CrossRef]

Koenderink, A. F.

W. L. Vos, A. F. Koenderink, I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[CrossRef]

Kramer, K. W.

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Krämer, K.

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Krämer, K. W.

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

Lee, Y.-H.

J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Lemmer, U.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Li, F.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Lifshitz, E.

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Lin, C.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Lin, Z.

Liscidini, M.

M. Liscidini, L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar micro-cavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

Liu, J.-L.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Liu, N.

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

Liu, X.

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
[CrossRef] [PubMed]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Lopez, H. A.

H. A. Lopez, P. M. Fauchet, “Erbium emission from porous silicon one-dimensional photonic band gap structures,” Appl. Phys. Lett. 77, 3704–3706 (2000).
[CrossRef]

Lüthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Magnusson, R.

Mahendran, R.

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

Martn-Rodrguez, R.

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

Masselink, W. T.

May, P. S.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

McCann, M.

C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.

Mertens, H.

H. Mertens, A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Mi, C.-C.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Mosk, A. P.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nakazawa, T.

Nann, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Nikolaev, I. S.

W. L. Vos, A. F. Koenderink, I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[CrossRef]

Nishii, J.

Orenstein, M.

A. Hayat, M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Paudel, H. P.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Pereira, S.

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

Peters, M.

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Plessen, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Plessen, G. v.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Polman, A.

H. Mertens, A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
[CrossRef]

M. J. A. de Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
[CrossRef]

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
[CrossRef]

Priolo, F.

Qian, H. S.

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

Qiao, H.

Qin, G.

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

Qin, W.

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

Qiu, J.

Quang, T.

S. John, T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Reece, P.

C. Johnson, P. Reece, G. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[CrossRef]

Reece, P. J.

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Richards, B.

B. Richards, A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54, 2679–2684 (2007).
[CrossRef]

B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006).
[CrossRef]

Riechel, S.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Rist, T.

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Rivoire, K.

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Rodriguez, A.

Romanov, S. G.

S. G. Romanov, A. V. Fokin, R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Rue, R. M. D. L.

S. G. Romanov, A. V. Fokin, R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[CrossRef]

Rufaihah, A. J.

D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[CrossRef]

Ryu, H.-Y.

J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Schelew, E.

Scherf, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Schietinger, S.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Shalav, A.

B. Richards, A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54, 2679–2684 (2007).
[CrossRef]

Shi, Y.

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

Smith, S.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Snoeks, E.

Soljacic, M.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, Z.

Steinkemper, H.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Strümpel, C.

C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.

Subramaniam, V.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

Thoma, R. E.

R. E. Thoma, H. Insley, G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5, 1222–9 (1966).
[CrossRef]

Tip, A.

M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
[CrossRef]

Tobias, I.

C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.

van den Hoven, G. N.

van Veggel, F. C. J. M.

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express 20, 10453–10469 (2012).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

von Plessen, G.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Vos, W. L.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

W. L. Vos, A. F. Koenderink, I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[CrossRef]

Vuckovic, J.

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Wang, F.

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
[CrossRef] [PubMed]

Wang, H.-Q.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

Wang, M.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Wang, S. S.

Willeke, G.

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

Wittwer, V.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

Wolf, S.

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

Wu, X.-L.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Wubs, M.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

Xu, S.-K.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yang, Z.

Yin, Z.

Young, J. F.

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

Zhang, R.

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

Zhang, Y.

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[CrossRef]

Zhang, Y.-X.

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

Zhao, D.

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

Zhong, L.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Zhou, D.

Zhu, K.

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[CrossRef]

H. A. Lopez, P. M. Fauchet, “Erbium emission from porous silicon one-dimensional photonic band gap structures,” Appl. Phys. Lett. 77, 3704–3706 (2000).
[CrossRef]

S. G. Romanov, A. V. Fokin, R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[CrossRef]

M. Liscidini, L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar micro-cavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

H. Mertens, A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Biomaterials (1)

D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[CrossRef]

Chem. Commun. (1)

N. Liu, W. Qin, G. Qin, T. Jiang, D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. 47, 7671–7673 (2011).
[CrossRef]

Chem. Mater. (1)

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Trans. Electron Devices (1)

B. Richards, A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices 54, 2679–2684 (2007).
[CrossRef]

Inorg. Chem. (1)

R. E. Thoma, H. Insley, G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5, 1222–9 (1966).
[CrossRef]

J. Alloys Compd. (1)

M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–7 (2009).
[CrossRef]

J. Appl. Phys. (3)

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys. 100, 023110 (2006).
[CrossRef]

J. Mater. Chem. (1)

F. Zhang, Y. Deng, Y. Shi, R. Zhang, D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3895–3900 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115, 19028–19036 (2011).
[CrossRef]

Nano Lett. (1)

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett. 10, 134–138 (2010). 20020691.
[CrossRef]

Opt. Express (6)

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express 20, 271–82 (2012).
[CrossRef] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express 21, 10606–10606 (2013).
[CrossRef] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, “ χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doublyresonant cavities,” Opt. Express 15, 7303–7318 (2007).
[CrossRef] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

K. Rivoire, S. Buckley, J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
[CrossRef] [PubMed]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express 20, 10453–10469 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (3)

S. John, T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

W. L. Vos, A. F. Koenderink, I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[CrossRef]

A. Hayat, M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

Phys. Rev. B (4)

M. J. A. de Dood, A. Polman, J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B 67, 115106 (2003).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

M. J. A. de Dood, J. Knoester, A. Tip, A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 115102 (2005).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Phys. Rev. Lett. (5)

P. Bermel, A. Rodriguez, J. D. Joannopoulos, M. Soljacic, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109, 203601 (2012).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Proc. SPIE (1)

F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol.  7725, 77250Y,” (2010), Photonics for Solar Energy Systems III.
[CrossRef]

Science (1)

P. Andrew, W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[CrossRef] [PubMed]

Small (1)

H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small 5, 2285–2290 (2009).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006).
[CrossRef]

J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95, 1960–1963 (2011).
[CrossRef]

C. Johnson, P. Reece, G. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[CrossRef]

Other (6)

J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich, J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9.
[CrossRef]

S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.

C. Strümpel, M. McCann, C. del Canizo, I. Tobias, P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.

M. Fox, Quantum Optics (Oxford University, 2006).

J. C. Goldschmidt, Novel solar cell concepts(Verlag Dr. Hut, München, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simulated grating-waveguide structure with an optimized period of 1.74 μm, a grating height of 1.16 μm, a layer below the grating with a height of 0.39 μm and a top layer thickness of 0.9 μm. The refractive indices nhigh and nlow used for the simulation are 2 and 1.5, respectively. The infinitely extended line source is sketched by the red, glowing region above the structure.

Fig. 2
Fig. 2

Simulation setup for the evaluation of the transition enhancement factor. The grating part of the structure (black box) is investigated in the following.

Fig. 3
Fig. 3

Energy level diagram of Er3+ in the host crystal β -NaYF4. The ion is excited at a wavelength of 1523 nm. Higher states are occupied either by subsequent absorption of photons (black broken arrows) or energy transfer processes (red broken arrow). The waved arrows depict multi-phonon relaxation processes [49, 50].

Fig. 4
Fig. 4

Enhancement of the upconversion quantum yield due to the irradiance enhancement within the structure. A first, dominant maximum is obtained for a grating period of 1.74 μm indicating a QY enhancement of a factor of 11. The inset shows the peak shape of this maximum. The orange squares denote integer multiples of 0.87 μm. This period corresponds to a resonance of the grating part of the structure.

Fig. 5
Fig. 5

Enhancement factor γE of the local irradiance within the grating structure for a grating period of 1.74 μm. The graph shows the grating part of the structure as indicated by the box in Fig. 2. Within the grating region, the irradiance can be increased by up to a factor of 11.5 in the high-index region (left) and up to a factor of 2.9 in the low-index region (right).

Fig. 6
Fig. 6

Variation of the transition probability γ31 for the transition from the 4I11/2 level to the ground state. The grating part of the structure is shown, with the high-index region on the left and the low-index region on the right. One can see that in the high-refractive index region (left), enhancement factors of the transition rate between 0.9 and 4.1 are found. In the low-index region (right), factors between 1.1 and 2.9 are reached.

Fig. 7
Fig. 7

Enhancement of the luminescence for an initial irradiance of 200 Wm−2. The luminescence can be increased by up to a factor of 30.0 in the high-index region (left) and up to a factor of 4.0 in the low-index region (right).

Fig. 8
Fig. 8

Enhancement of the absorption of the incident irradiance at a wavelength of 1523 nm. The absorption is increased by up to a factor of 10.0 in the high-index region (left) at the same spots, where the highest luminescence values are found. In the low-index region (right), the absorption enhancement is smaller, with a maximum enhancement of 2.8.

Fig. 9
Fig. 9

Relative upconversion quantum yield enhancement at each lattice position for the transition from the 4I11/2 level to the ground state 4I15/2. The initial irradiance without the structure was set to be 200 Wm−2. A maximum relative enhancement of the upconversion quantum yield by a factor of 3.9 can be reached. In the low-index region (right), peak enhancement values of 2.0 can be found. Over the whole structure, the UCQY is increased by a factor of 1.8.

Tables (1)

Tables Icon

Table 1 Overview over maximum and averaged enhancement factors of the determined different quantities within the waveguide structure: The maximum values are given for the low and high refractive index region separately; the average was calculated for the whole structure

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

GSA struct ( r ) = γ E ( r ) × GSA 0 ESA struct ( r ) = γ E ( r ) × ESA 0 STE struct ( r ) = γ E ( r ) × STE 0 ,
γ E ( r ) = Φ in , struct ( r , ω in ) Φ in , 0 ( r , ω in ) .
I ( r ) = n × E ( r ) 2 ,
γ E ( r ) = n struct ( r ) n 0 × I struct ( r ) I 0 ( r ) = n struct ( r ) n 0 × ( E struct ( r ) E 0 ( r ) ) 2 = n struct ( r ) n 0 × ( | E struct , c ( r ) | | E 0 , c ( r ) | ) 2 ,
P if ( r ) = 2 π | M if | 2 ρ ( r , ω if ) ,
γ if ( r ) = P if , struct ( r ) P if , 0 ( r ) = ρ struct ( ω if , r ) ρ 0 ( ω if , r ) ,
W ( ω if , r ) = A S ( ω , r ) d 2 r ω | ω if Δ ω ,
γ if ( r ) = W struct ( ω if , r ) W 0 ( ω if , r ) .
n ˙ = [ G S A + E S A + S T E + S P E + M P R ] × n + v E T ( n ) .
A if , struct ( r ) = γ if ( r ) × A if .
A b s = n ( 1 ) × G S A + n ( 2 ) × E S A + n ( 4 ) × E S A n ( 2 ) × S T E n ( 4 ) × S T E n ( 6 ) × S T E .
γ Abs = Abs struct Abs 0 .
Lum = n ( 3 ) × A 31 .
γ Lum = Lum struct Lum 0 .
U C Q Y = r Lum r Abs .
γ UCQY = UCQY struct UCQY 0 .

Metrics