Abstract

We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
    [CrossRef] [PubMed]
  2. S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
    [CrossRef] [PubMed]
  3. A. Bozzola, M. Liscidini, L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
    [CrossRef] [PubMed]
  4. O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
    [CrossRef]
  5. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L.C. Andreani, T.F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21, A433–A439 (2013).
    [CrossRef]
  6. C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
    [CrossRef] [PubMed]
  7. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
    [CrossRef] [PubMed]
  8. R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
    [CrossRef]
  9. T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
    [CrossRef]
  10. S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
    [CrossRef]
  11. Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
    [CrossRef] [PubMed]
  12. I. Simonsen, “Optics of surface disordered systems,” Eur. Phys. J. — Special Topics 181, 1–103 (2010).
    [CrossRef]
  13. S. Fahr, T. Kirchartz, C. Rockstuhl, F. Lederer, Opt. Express 19, A865–A874 (2011).
    [CrossRef]
  14. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
    [CrossRef]
  15. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
    [CrossRef]
  16. P. Kowalczewski, M. Liscidini, L. C. Andreani, “Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett. 37, 4868–4870 (2012).
    [CrossRef] [PubMed]
  17. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
    [CrossRef] [PubMed]
  18. V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
    [CrossRef]
  19. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
    [CrossRef] [PubMed]
  20. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
    [CrossRef]
  21. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
    [CrossRef] [PubMed]
  22. V. Freilikher, E. Kanzieper, A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep. 288, 127–204 (1997).
    [CrossRef]
  23. D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [CrossRef]
  24. M. Liscidini, D. Gerace, L. C. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 035324 (2008).
    [CrossRef]
  25. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).
  26. K. H. Jun, R. Carius, H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B 66, 115301 (2002).
    [CrossRef]
  27. Reference Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  28. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
    [CrossRef]
  29. D. Gerace, L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
    [CrossRef] [PubMed]
  30. D. Gerace, L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939–4951 (2005).
    [CrossRef] [PubMed]
  31. S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef] [PubMed]
  32. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [CrossRef]
  33. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt: Res. Appl. 10, 235–241 (2002).
    [CrossRef]
  34. A. Bozzola, M. Liscidini, L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. (2013). In press, published online: http://dx.doi.org/10.1002/pip.2385 .
    [CrossRef]
  35. J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
    [CrossRef]
  36. E. Forniés, C. Zaldo, J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells 87, 583–593 (2005).
    [CrossRef]
  37. J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
    [CrossRef]
  38. M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
    [CrossRef]
  39. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
    [CrossRef] [PubMed]
  40. O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
    [CrossRef]
  41. K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
    [PubMed]
  42. M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
    [CrossRef] [PubMed]

2013 (7)

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L.C. Andreani, T.F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21, A433–A439 (2013).
[CrossRef]

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
[CrossRef] [PubMed]

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[CrossRef]

2012 (11)

P. Kowalczewski, M. Liscidini, L. C. Andreani, “Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett. 37, 4868–4870 (2012).
[CrossRef] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[CrossRef] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

A. Bozzola, M. Liscidini, L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[CrossRef] [PubMed]

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

2011 (4)

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[CrossRef]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, F. Lederer, Opt. Express 19, A865–A874 (2011).
[CrossRef]

2010 (4)

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef] [PubMed]

I. Simonsen, “Optics of surface disordered systems,” Eur. Phys. J. — Special Topics 181, 1–103 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

2008 (2)

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 035324 (2008).
[CrossRef]

2005 (3)

D. Gerace, L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939–4951 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

E. Forniés, C. Zaldo, J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells 87, 583–593 (2005).
[CrossRef]

2004 (1)

2003 (1)

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

2002 (2)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt: Res. Appl. 10, 235–241 (2002).
[CrossRef]

K. H. Jun, R. Carius, H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B 66, 115301 (2002).
[CrossRef]

1999 (1)

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

1997 (1)

V. Freilikher, E. Kanzieper, A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep. 288, 127–204 (1997).
[CrossRef]

1982 (1)

Albella, J. M.

E. Forniés, C. Zaldo, J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells 87, 583–593 (2005).
[CrossRef]

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

Andreani, L. C.

Andreani, L.C.

Bailat, J.

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[CrossRef]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Barraud, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[CrossRef]

Beckers, T.

Billet, A.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Bittkau, K.

Boccard, M.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Bozzola, A.

Buatier de Mongeot, F.

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Bugnon, G.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Burresi, M.

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

Carius, R.

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

Chiappe, D.

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Crupi, I.

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

Culshaw, I. S.

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

De Wolf, S.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Delli Veneri, P.

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Depauw, V.

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[CrossRef] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Dewan, R.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Ding, L.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Dominé, D.

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Dross, F.

Drouard, E.

El Daif, O.

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[CrossRef] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

Erni, L.

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Escarré, J.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Fahr, S.

Fan, S.

Fave, A.

Fesquet, L.

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Fischer, M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Forniés, E.

E. Forniés, C. Zaldo, J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells 87, 583–593 (2005).
[CrossRef]

Freilikher, V.

V. Freilikher, E. Kanzieper, A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep. 288, 127–204 (1997).
[CrossRef]

Gerace, D.

Gomard, G.

Gordon, I.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[CrossRef] [PubMed]

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

Green, M. A.

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt: Res. Appl. 10, 235–241 (2002).
[CrossRef]

Hänni, S.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Haug, F.-J.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Hüpkes, J.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Isabella, O.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

Jäger, K.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Jamois, C.

Jovanov, V.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Jun, K. H.

K. H. Jun, R. Carius, H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B 66, 115301 (2002).
[CrossRef]

Kanzieper, E.

V. Freilikher, E. Kanzieper, A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep. 288, 127–204 (1997).
[CrossRef]

Kirchartz, T.

Kluth, O.

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

Knipp, D.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Kowalczewski, P.

Krauss, T.F.

Krc, J.

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

Lanz, T.

T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[CrossRef]

Lederer, F.

Lewis, L.

Liscidini, M.

Madzharov, D.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Maradudin, A.

V. Freilikher, E. Kanzieper, A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep. 288, 127–204 (1997).
[CrossRef]

Martella, C.

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Martins, E. R.

Meillaud, F.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Mendes, M.J.

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

Meng, X.

Mercaldo, L.V.

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Mirabella, S.

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

Moll, F.

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

Morawiec, S.

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

Nelson, J.

J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
[CrossRef]

Nicolay, S.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Owen, J. I.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

Patrini, M.

Pertsch, T.

Poortmans, J.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

Prasciolu, M.

Pratesi, F.

Priolo, F.

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

Python, M.

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Qiu, Y.

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

Raman, A.

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Reardon, C.

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Rockstuhl, C.

Ruhstaller, B.

T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[CrossRef]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef] [PubMed]

Schuster, C. S.

Scullion, M. G.

Seassal, C.

Shah, A.

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Simone, F.

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

Simonsen, I.

I. Simonsen, “Optics of surface disordered systems,” Eur. Phys. J. — Special Topics 181, 1–103 (2010).
[CrossRef]

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 035324 (2008).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef] [PubMed]

Smole, F.

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

Söderström, K.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

Söderström, T.

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

Stiebig, H.

K. H. Jun, R. Carius, H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B 66, 115301 (2002).
[CrossRef]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef] [PubMed]

Topic, M.

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

Tormen, M.

Trompoukis, C.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[CrossRef] [PubMed]

Usatii, I.

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Vallat-Sauvain, E.

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

Van Nieuwenhuysen, K.

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

van Swaaij, R. A. C. M. M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Vynck, K.

Whittaker, D. M.

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Wiersma, D. S.

Wiersma, D.S.

K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Wiesendanger, S.

Yablonovitch, E.

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Yu, Z.

Zaldo, C.

E. Forniés, C. Zaldo, J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells 87, 583–593 (2005).
[CrossRef]

Zeman, M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[CrossRef]

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef] [PubMed]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

Zilk, M.

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano 6, 2790–2797 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101, 103901 (2012).
[CrossRef]

Eur. Phys. J. — Special Topics (1)

I. Simonsen, “Optics of surface disordered systems,” Eur. Phys. J. — Special Topics 181, 1–103 (2010).
[CrossRef]

J. Appl. Phys. (2)

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

T. Lanz, B. Ruhstaller, C. Battaglia, C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids 354, 2258–2262 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (3)

C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11, 661–665 (2011).
[CrossRef] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef] [PubMed]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Nanotechnology (2)

S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[CrossRef] [PubMed]

C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology 24, 225201 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Opt. Express (10)

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
[CrossRef] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, F. Lederer, Opt. Express 19, A865–A874 (2011).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[CrossRef]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

A. Bozzola, M. Liscidini, L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
[CrossRef] [PubMed]

S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express 21, A450–A459 (2013).
[CrossRef]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef] [PubMed]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L.C. Andreani, T.F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21, A433–A439 (2013).
[CrossRef]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20, A465–A475 (2012).
[CrossRef] [PubMed]

D. Gerace, L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939–4951 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rep. (1)

V. Freilikher, E. Kanzieper, A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep. 288, 127–204 (1997).
[CrossRef]

Phys. Rev. B (3)

D. M. Whittaker, I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 035324 (2008).
[CrossRef]

K. H. Jun, R. Carius, H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B 66, 115301 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

Prog. Photovolt: Res. Appl. (2)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt: Res. Appl. 10, 235–241 (2002).
[CrossRef]

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

Progr. Photovolt: Res. Appl. (1)

V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl. 19, 844–850 (2011).
[CrossRef]

Sol. Energ. Mat. Sol. Cells (2)

E. Forniés, C. Zaldo, J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells 87, 583–593 (2005).
[CrossRef]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells 98, 185–190 (2012).
[CrossRef]

Thin Solid Film (1)

J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film 426, 296–304 (2003).
[CrossRef]

Other (4)

A. Bozzola, M. Liscidini, L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. (2013). In press, published online: http://dx.doi.org/10.1002/pip.2385 .
[CrossRef]

Reference Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/ .

J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
[CrossRef]

E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structures under consideration: (a) thin-film silicon solar cell with the randomly rough interface, described by the RMS of height σ and the lateral correlation length lc; (b) thin-film silicon solar cell with the hybrid interface, being a combination of a rough interface and a diffraction grating. The grating has period a, width of the etched region b, and etching depth h.

Fig. 2
Fig. 2

Short-circuit current density as a function of lateral correlation length lc and RMS deviation of height σ, for a 1μm thick μc-Si solar cell with rough interface. Each point is calculated as an average of 10 surface realizations.

Fig. 3
Fig. 3

Short-circuit current density as a function of RMS deviation of height σ, for 1μm thick c-Si and μc-Si solar cells with rough interfaces. Lateral correlation length is equal to lc = 160nm.

Fig. 4
Fig. 4

Absorption (left) and spectral contribution to the short-circuit current density (right) in 1μm-thick c-Si and μc-Si solar cells, at three different values of RMS deviation of height σ. Lateral correlation length is equal to lc = 160nm.

Fig. 5
Fig. 5

Left: absorption in c-Si (a) and μc-Si (b) solar cells with the optimized rough ARC/Si interface (σ = 300nm, lc = 160nm) and an absorbing layer of 1μm, along with the corresponding Lambertian Limit. Both silver and perfect back reflectors (BR) were considered. Right: absorption in c-Si solar cells with rough ARC/Si interface (σ = 300nm, lc = 160nm), a perfect back reflector (BR), and an absorbing layer of thickness d = 2μm (c), 5μm (d), and 10μm (e), along with the corresponding Lambertian Limit.

Fig. 6
Fig. 6

Haze of transmitted light as a function of energy for increasing RMS deviation of height σ, calculated for the rough interface sketched in the inset. Both anti-reflection coating (ARC) and c-Si layer are assumed to be semi-infinite. Each point is taken as an average of 500 rough surface realizations. The lateral correlation length is equal to lc = 160nm.

Fig. 7
Fig. 7

AID of transmitted light as a function of energy for increasing RMS deviation of height σ, calculated for the rough ARC/c-Si interface. The AID is taken as an average of 500 rough surface realizations. The black rectangles denote the specular part of transmitted light (i.e., the light propagating within the cone between −1.5° and 1.5°). The lateral correlation length is equal to lc = 160nm.

Fig. 8
Fig. 8

AID of transmitted light at (a) E = 1.24eV and (b) E = 2.86eV, calculated at three values of RMS deviation of height σ. The results are compared with the cosine distribution corresponding to the Lambertian Limit. Lateral correlation length is equal to lc = 160nm.

Fig. 9
Fig. 9

Absorption in 1μm thick c-Si solar cells with (a) the rough interface with a modest spatial features (σ = 80nm, lc = 60nm), (b) the optimal diffraction grating (a = 600nm, b = 180nm, h = 240nm), and (c) the hybrid interface. The structures are sketched on the right. The results are compared with the corresponding Lambertian Limit of absorption.

Tables (2)

Tables Icon

Table 1 Short-circuit current densities calculated for 1μm thick c-Si and μc-Si solar cells, with either silver or perfect back reflectors (BR), together with the values corresponding to the Lambertian Limit. The parameters of the rough interface are: σ = 300nm, lc = 160nm.

Tables Icon

Table 2 Short-circuit current density JSC and its relative enhancement for a 1μm thick c-Si solar cell with the optimal diffraction grating (a = 600nm, b = 180nm, h = 240nm), the rough interface with a modest spatial features (σ = 80nm, lc = 60nm), the hybrid interface, and the optimized rough interface (σ = 300nm, lc = 160nm), compared with the JSC corresponding to the Lambertian Limit. Relative enhancement of the JSC was calculated with respect to the structure with a flat ARC/Si interface.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J SC = q b S ( E ) A ( E ) d E ,
A T = ( 1 R ext ) ( 1 T + T ) 1 R f T + T ,
T + T = π / 2 π / 2 e 2 α d / cos θ cos ( θ ) d θ π / 2 π / 2 cos ( θ ) d θ ,
R f = 1 1 / n .

Metrics