Abstract

Using a hybrid nanoscale/macroscale model, we simulate the efficiency of a luminescent solar concentrator (LSC) which employs silver nanoparticles to enhance the dye absorption and scatter the incoming light. We show that the normalized optical efficiency can be increased from 10.4% for a single dye LSC to 32.6% for a plasmonic LSC with silver spheres immersed inside a thin dye layer. Most of the efficiency enhancement is due to scattering of the particles and not due to dye absorption/re-emission.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber, J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300 (1976).
    [CrossRef] [PubMed]
  2. A. Goetzberger, W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
    [CrossRef]
  3. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, D. Vanmaekelbergh, “Luminescent solar concentrators–a review of recent results,” Opt. Express 16, 21773–21792 (2008).
    [CrossRef] [PubMed]
  4. V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
    [CrossRef]
  5. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763–6768 (2008).
    [CrossRef] [PubMed]
  6. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32, 850–856 (2010).
    [CrossRef]
  7. S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energ. Mat. Sol. Cells 98, 385–390 (2012).
    [CrossRef]
  8. H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energ. Mat. 16, 223–234 (1987).
    [CrossRef]
  9. S. Agostinelli, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (2003).
    [CrossRef]
  10. P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
    [CrossRef]
  11. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  12. X. Miao, I. Brener, T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B 27, 1561–1570 (2010).
    [CrossRef]
  13. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
    [CrossRef]
  14. J. S. Batchelder, A. H. Zewail, T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [CrossRef] [PubMed]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  16. E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [CrossRef]
  17. C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  19. P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
    [CrossRef] [PubMed]
  20. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  21. Oregon Medical Laser Center, “Rhodamine B,” http://omlc.ogi.edu/spectra/PhotochemCAD/html/009.html (2013).
  22. M. Fikry, M. M. Omar, L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19, 741–746 (2009).
    [CrossRef] [PubMed]
  23. A. V. Deshpande, E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
    [CrossRef]
  24. National Renewable Energy Laboratory, “Reference solar spectral irradiance: Air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ (2013).
  25. F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin. 44, 105–112 (1989).
    [CrossRef]
  26. C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
    [CrossRef]
  27. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [CrossRef]
  28. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]

2012 (1)

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energ. Mat. Sol. Cells 98, 385–390 (2012).
[CrossRef]

2010 (3)

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32, 850–856 (2010).
[CrossRef]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

X. Miao, I. Brener, T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B 27, 1561–1570 (2010).
[CrossRef]

2009 (1)

M. Fikry, M. M. Omar, L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19, 741–746 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

2003 (2)

S. Agostinelli, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (2003).
[CrossRef]

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

2000 (1)

A. V. Deshpande, E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

1996 (1)

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

1989 (1)

F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

1987 (1)

H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energ. Mat. 16, 223–234 (1987).
[CrossRef]

1982 (1)

1981 (1)

1977 (1)

A. Goetzberger, W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

1976 (1)

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Agostinelli, S.

S. Agostinelli, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (2003).
[CrossRef]

Anger, P.

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

Arbeloa, F. L.

F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

Arbeloa, I. L.

F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Barnham, K. W. J.

Batchelder, J. S.

Bende, E. E.

Bharadwaj, P.

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

Bindhu, C. V.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Bose, R.

Brener, I.

Büchtemann, A.

Budel, T.

Burgers, A. R.

Carter, S. A.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Chandra, S.

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energ. Mat. Sol. Cells 98, 385–390 (2012).
[CrossRef]

Chatten, A. J.

Cole, T.

Coronado, E. A.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Debije, M. G.

Deshpande, A. V.

A. V. Deshpande, E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

Donegá, C. D. M.

Doran, J.

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energ. Mat. Sol. Cells 98, 385–390 (2012).
[CrossRef]

Farrell, D. J.

Fikry, M.

M. Fikry, M. M. Omar, L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19, 741–746 (2009).
[CrossRef] [PubMed]

Goetzberger, A.

A. Goetzberger, W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

Greube, W.

A. Goetzberger, W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Harilal, S. S.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

Hecht, B.

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Hoeks, T. L.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Ismail, L. Z.

M. Fikry, M. M. Omar, L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19, 741–746 (2009).
[CrossRef] [PubMed]

Issac, R. C.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

Kennedy, M.

Koole, R.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Lambe, J.

Luk, T. S.

McCormack, S. J.

Meijerink, A.

Meyer, A.

Meyer, T.

Miao, X.

Namdas, E. B.

A. V. Deshpande, E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

Nampoori, V. P. N.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

Novotny, L.

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Ojeda, P. R.

F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

Olson, J. D.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

Omar, M. M.

M. Fikry, M. M. Omar, L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19, 741–746 (2009).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quilitz, J.

Reisfeld, R.

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32, 850–856 (2010).
[CrossRef]

Richards, B. S.

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Rowan, B. C.

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Schatz, G. C.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Sholin, V.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

Slooff, L. H.

Vallabhan, C. P. G.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

van Sark, W. G. J. H. M.

Vanmaekelbergh, D.

Varier, G. K.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

Verbunt, P. P. C.

Weber, W. H.

Wilson, H. R.

H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energ. Mat. 16, 223–234 (1987).
[CrossRef]

Yablonovitch, E.

Zewail, A. H.

Appl. Opt. (3)

Appl. Phys. (1)

A. Goetzberger, W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

Appl. Phys. Lett. (1)

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

J. Appl. Phys. (1)

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[CrossRef]

J. Chem. Phys. (1)

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

J. Fluoresc. (1)

M. Fikry, M. M. Omar, L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc. 19, 741–746 (2009).
[CrossRef] [PubMed]

J. Lumin. (2)

A. V. Deshpande, E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys. 291074–1079 (1996).
[CrossRef]

Nanotechnology (1)

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment (1)

S. Agostinelli, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (2003).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32, 850–856 (2010).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (1)

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Sol. Energ. Mat. (1)

H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energ. Mat. 16, 223–234 (1987).
[CrossRef]

Sol. Energ. Mat. Sol. Cells (1)

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energ. Mat. Sol. Cells 98, 385–390 (2012).
[CrossRef]

Other (5)

C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Oregon Medical Laser Center, “Rhodamine B,” http://omlc.ogi.edu/spectra/PhotochemCAD/html/009.html (2013).

National Renewable Energy Laboratory, “Reference solar spectral irradiance: Air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics