Abstract

Transparent metal grid combining with plasmonic absorption enhancement is a promising replacement to indium tin oxide thin films. We numerically demonstrate metal grids in one or two dimension lead to plasmonic absorption enhancements in ultrathin organic solar cells. In this paper, we study optical design of metal grids for plasmonic light trapping and identify different plasmonic modes of the surface plasmon polaritons excited at the interfaces of glass/metal grids, metal grids/active layers, and the localized surface plasmon resonance of the metal grids using numerical calculations. One dimension metal grids with the optimal design of a width and a period lead to the absorption enhancement in the ultrathin active layers of 20 nm thickness by a factor of 2.6 under transverse electric polarized light compared to the case without the metal grids. Similarly, two dimensional metal grids provide the absorption enhancement by a factor of 1.8 under randomly polarized light.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
    [CrossRef]
  2. R. F. Service, “Solar Energy. Outlook Brightens for Plastic Solar Cells,” Science 332(6027), 293 (2011).
    [CrossRef] [PubMed]
  3. J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
    [CrossRef] [PubMed]
  4. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [CrossRef]
  5. N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
    [CrossRef]
  6. S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012).
    [CrossRef]
  7. F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
    [CrossRef]
  8. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
    [CrossRef] [PubMed]
  9. J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
    [CrossRef]
  10. M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
    [CrossRef]
  11. M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
    [CrossRef]
  12. T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
  13. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
    [CrossRef]
  14. J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
    [CrossRef]
  15. R. B. Smith and G. L. Mitchell, Calculation of Complex Propagating Modes in Arbitrary, Plane-Layered, Complex Dielectric Structures (Southern Methodist University, Dallas, 1998).
  16. M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
    [CrossRef] [PubMed]
  17. C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
    [CrossRef] [PubMed]
  18. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
    [CrossRef] [PubMed]
  19. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  20. G. Lévêque, O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
    [CrossRef] [PubMed]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2013 (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

2012 (2)

S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012).
[CrossRef]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

2011 (3)

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

R. F. Service, “Solar Energy. Outlook Brightens for Plastic Solar Cells,” Science 332(6027), 293 (2011).
[CrossRef] [PubMed]

2010 (3)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

2009 (1)

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
[CrossRef] [PubMed]

2008 (4)

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

2007 (3)

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[CrossRef]

2006 (2)

G. Lévêque, O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
[CrossRef] [PubMed]

J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
[CrossRef]

Bailly, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Brabec, C. J.

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

Brongersma, M. L.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Butler, J. K.

J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
[CrossRef]

Cai, W.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Catchpole, K. R.

Cha, J. J.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Choy, W. C. H.

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

Connor, S. T.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Cui, Y.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

de Bettignies, R.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Defranoux, C.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Escoubas, L.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Evans, G. A.

J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
[CrossRef]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Flory, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Frost, J. M.

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
[CrossRef] [PubMed]

Fung, D. D. S.

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

Gangopadhyay, P.

S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012).
[CrossRef]

Garnett, E. C.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Ginger, D. S.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Greyson Christoforo, M.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Guillerez, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Guo, L. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[CrossRef]

Guyer, S. R.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Hammer, J. M.

J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Kang, M. G.

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[CrossRef]

Kang, M.-G.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Kasemo, B.

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

Kim, J.

M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Kim, M.-S.

M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

Kirkpatrick, J.

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
[CrossRef] [PubMed]

Krantz, J.

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

Kulkarni, A. P.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Kwiatkowski, J. J.

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
[CrossRef] [PubMed]

Lagemaat, J. V. D.

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

Langhammer, C.

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Lévêque, G.

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Luo, X.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Mahmood, F.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Martin, O. J. F.

McGehee, M. D.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Monestier, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Morfa, A. J.

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

Munechika, K.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Nelson, J.

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
[CrossRef] [PubMed]

Noone, K. M.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Norwood, R. A.

S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012).
[CrossRef]

Oh, S.-H.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Ozgur, G.

J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
[CrossRef]

Park, H. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Polman, A.

Reilly Iii, T. H.

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

Richter, M.

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

Rowlen, K. L.

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

Service, R. F.

R. F. Service, “Solar Energy. Outlook Brightens for Plastic Solar Cells,” Science 332(6027), 293 (2011).
[CrossRef] [PubMed]

Sha, W. E. I.

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

Shahin, S.

S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012).
[CrossRef]

Simon, J.-J.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Spallek, S.

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

Spiecker, E.

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

Tenent, R. C.

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

Torchio, P.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Wang, C. C. D.

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Xie, F.-X.

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

Xu, T.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Zoric, I.

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, “Modeling charge transport in organic photovoltaic materials,” Acc. Chem. Res. 42(11), 1768–1778 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, “Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells,” Adv. Funct. Mater. 21(24), 4784–4787 (2011).
[CrossRef]

Adv. Mater. (3)

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[CrossRef]

M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[CrossRef]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

T. H. Reilly Iii, J. V. D. Lagemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

S. Shahin, P. Gangopadhyay, R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett. 101(5), 053104–053109 (2012).
[CrossRef]

F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett. 99(15), 153304 (2011).
[CrossRef]

J. Appl. Phys. (1)

J. M. Hammer, G. Ozgur, G. A. Evans, J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys. 100(10), 103103 (2006).
[CrossRef]

J. Chem. Phys. (1)

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[CrossRef]

Science (1)

R. F. Service, “Solar Energy. Outlook Brightens for Plastic Solar Cells,” Science 332(6027), 293 (2011).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Other (2)

R. B. Smith and G. L. Mitchell, Calculation of Complex Propagating Modes in Arbitrary, Plane-Layered, Complex Dielectric Structures (Southern Methodist University, Dallas, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Device structure schematic of ultrathin organic solar cells with a 1D plasmonic metal grid embedded in a buffer layer for FDTD calculations. The x-y coordinate for the FDTD calculation is drawn together.

Fig. 2
Fig. 2

Contour plots of the optical absorption in (a) the active layers and (b) the metal grids as functions of a metal grid period and a wavelength. The solid line and the dashed line are dispersion curves of the SPP modes excited at the interfaces of glass/metal grid and metal grid/active layer, respectively. The inset figures are magnetic field (H-field) distributions in the multi-layered solar cells calculated by the Eigen mode solver for the SPP modes excited at (1) glass/metal grid and (2) metal grid/active layer, respectively. The vacuum wavelengths of incident light are 600 nm and 700 nm for SPP mode (1) and (2), respectively. (c) Normalized E-field intensity (|E|2) distributions at the wavelength of 412 nm, the metal grid period of 200 nm and the metal grid width of 100 nm. The E-field intensity is normalized to that (|E0|2) of incident light. (d) Absorption enhancements as a function of the metal grid period under TM, TE and randomly polarized light for the device structures with the width of 100 nm.

Fig. 3
Fig. 3

Contour plots of the optical absorption in (a) the active layers and (b) the metal grids as functions of a metal grid width and a wavelength. (c) Normalized E-field intensity distributions at the wavelength of 640 nm, the metal grid period of 150 nm and the metal grid width of 40 nm. The E-field intensity (|E|2) is normalized to that (|E0|2) of incident light. (d) Absorption enhancements as a function of the metal grid width under TM, TE and randomly polarized light for the device structures with the period of 150 nm.

Fig. 4
Fig. 4

(a) Contour plots of the optical absorption in the metal grids. (b) Calculated photocurrents for the cells of various active layer thicknesses with and without the metal grids under TM, TE and randomly polarized light. The incident light is assumed to be a standard solar radiation (AM 1.5G) at a light intensity of 100 mW/cm2.

Fig. 5
Fig. 5

Absorption enhancements in the active layers for the cells with varying the width and the period of the metal grids under (a) TM, (b) TE, and (c) randomly polarized light.

Fig. 6
Fig. 6

Optical transmission of 1D metal grids with the width of 40 nm and the period of 150 nm on glass under TM (black), TE (red), and randomly polarized light (blue) which is incident from glass side.

Fig. 7
Fig. 7

(a) Schematic of device structure with a 2D metal grid embedded in a buffer layer. Ag reflector, active layer, buffer layer, metal grid, and substrate are colored with dark gray, purple, blue, dark gray, and light gray, respectively. The x-y-z coordinate for FDTD calculations is drawn together. (b) Absorption spectra of the cells with and without 1D, 2D metal grids under randomly polarized light. The width and the period of the metal grids are 40 nm and 150 nm, respectively. (c) Normalized E-field intensity distributions at the wavelength of 695 nm under polarized light in the x direction. The contour plot is shown on the cross-section along x-y plane passing through the vertical interface of metal grid/buffer layer.

Metrics