Abstract

The illumination performance and energy savings of a solar fiber optic lighting system have been verified in a study hall - corridor interior. The system provides intensive white light with a high luminous flux of 4500 lm under 130000 lx direct sun radiation at a 10 m fiber distance from the sun-tracking light collector. The color temperature that describes the light color perceived is 5800 ± 300 K, i.e. close to the direct sunlight outside, and the color rendering index (86), that describes how well colors are rendered under the light source, is higher for the solar lights than for the supplementary fluorescent lights (77). Thus this high quality solar lighting improves the visibility of all kinds of objects compared to the fluorescent lights. Annual lighting energy savings of 19% in Uppsala, Sweden and 46% in southern Europe were estimated for a study hall interior, as well as 27% and 55% respectively in an interior illuminated 16 h per day all days of a year.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nakamura, “Optical waveguide system for solar power applications in space,” Proc. SPIE 7423, 74230C, 74230C-10 (2009).
    [CrossRef]
  2. A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
    [CrossRef]
  3. F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
    [CrossRef]
  4. Himawari solar fiber optic lighting systems, http://www.himawari-net.co.jp/e_page-index01.html .
  5. T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).
  6. L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid Solar lighting: Final technical report and results of the field trial program”, U.S. Department of Energy (DOE) Information Bridge, http://www.osti.gov/bridge , ONRL-TM-150, (2008).
  7. M. S. Mayhoub, D. J. Carter, “Towards hybrid lighting systems: A review,” Lighting Res. Tech. 42(1), 51–71 (2010).
    [CrossRef]
  8. M. S. Mayhoub, D. J. Carter, “Hybrid Lighting systems: performance and design,” Lighting Res. Tech. 44(3), 261–276 (2012).
    [CrossRef]
  9. The earlier version (SP2) of Parans Solar lighting system, www.parans.com .
  10. A. Kribus, O. Zik, J. Karni, “Optical fibers and solar power generation,” Sol. Energy 68(5), 405–416 (2000).
    [CrossRef]
  11. CIE 84–1989 Photocopy Edition 1996, “The measurement of luminous flux”, Technical report, CIE, Austria (1996).
  12. CIE 15:2004 3rd Edition, “Colorimetry”, Technical report, CIE, Austria (2004).
  13. CIE13, 3–1995, “Method of measuring and specifying colour rendering properties of light sources”, Technical report, CIE, Austria (1995).
  14. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
    [CrossRef]
  15. M.-C. Dubois and Å. Blomsterberg, Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: A literature review. Energy and Buildings (2011), doi:.
    [CrossRef]
  16. Y. Yang and X. Shi, “Analysis and evaluation on luminaire efficacy and colour quality of LED downlights”, Proc. of CIE2012 Lighting quality and energy efficiency-conference CIE x037:2012, pp 05, 546–554, (2012).
  17. http://www.lighting.philips.com/main/led/index.wpd and http://www.osram.com/osram_com/products/led-technology/indoor-led-luminaires/index.jsp
  18. L. Edwards and P. Torcellini, A literature review of the effects of natural light on building occupants”, National Renewable Energy Laboratory, Colorado, USA, NREL/TP-550–30769 (2002).
  19. Swedish Meteorological and Hydrological Institute (SMHI), http://www.smhi.se/klimatdata/meteorologi /stralning/normal-solskenstid-for-ett-ar-1.3052, 2011.

2012 (1)

M. S. Mayhoub, D. J. Carter, “Hybrid Lighting systems: performance and design,” Lighting Res. Tech. 44(3), 261–276 (2012).
[CrossRef]

2011 (1)

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

2010 (1)

M. S. Mayhoub, D. J. Carter, “Towards hybrid lighting systems: A review,” Lighting Res. Tech. 42(1), 51–71 (2010).
[CrossRef]

2009 (1)

T. Nakamura, “Optical waveguide system for solar power applications in space,” Proc. SPIE 7423, 74230C, 74230C-10 (2009).
[CrossRef]

2006 (1)

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

2005 (1)

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

2000 (1)

A. Kribus, O. Zik, J. Karni, “Optical fibers and solar power generation,” Sol. Energy 68(5), 405–416 (2000).
[CrossRef]

1992 (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
[CrossRef]

Carter, D. J.

M. S. Mayhoub, D. J. Carter, “Hybrid Lighting systems: performance and design,” Lighting Res. Tech. 44(3), 261–276 (2012).
[CrossRef]

M. S. Mayhoub, D. J. Carter, “Towards hybrid lighting systems: A review,” Lighting Res. Tech. 42(1), 51–71 (2010).
[CrossRef]

Doulos, L.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Fontani, D.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

Fontoynont, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Francini, F.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

Jacobs, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Jafrancesco, D.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

Johansson, D.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

Karni, J.

A. Kribus, O. Zik, J. Karni, “Optical fibers and solar power generation,” Sol. Energy 68(5), 405–416 (2000).
[CrossRef]

Kräuchi, Ph.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

Kribus, A.

A. Kribus, O. Zik, J. Karni, “Optical fibers and solar power generation,” Sol. Energy 68(5), 405–416 (2000).
[CrossRef]

Maamari, F.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Mayhoub, M. S.

M. S. Mayhoub, D. J. Carter, “Hybrid Lighting systems: performance and design,” Lighting Res. Tech. 44(3), 261–276 (2012).
[CrossRef]

M. S. Mayhoub, D. J. Carter, “Towards hybrid lighting systems: A review,” Lighting Res. Tech. 42(1), 51–71 (2010).
[CrossRef]

McCamy, C. S.

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
[CrossRef]

Mercatelli, L.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

Mihalakakou, G.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Nakamura, T.

T. Nakamura, “Optical waveguide system for solar power applications in space,” Proc. SPIE 7423, 74230C, 74230C-10 (2009).
[CrossRef]

Nilsson, N.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

Pohl, W.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Sansoni, P.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

Santamouris, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Solomon, J.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Tsangrassoulis, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Volotinen, T. T.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

Widen, J.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

Wilson, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Zik, O.

A. Kribus, O. Zik, J. Karni, “Optical fibers and solar power generation,” Sol. Energy 68(5), 405–416 (2000).
[CrossRef]

Zimmerman, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

Color Res. Appl. (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
[CrossRef]

Lighting Res. Tech. (2)

M. S. Mayhoub, D. J. Carter, “Towards hybrid lighting systems: A review,” Lighting Res. Tech. 42(1), 51–71 (2010).
[CrossRef]

M. S. Mayhoub, D. J. Carter, “Hybrid Lighting systems: performance and design,” Lighting Res. Tech. 44(3), 261–276 (2012).
[CrossRef]

Proc. SPIE (2)

T. Nakamura, “Optical waveguide system for solar power applications in space,” Proc. SPIE 7423, 74230C, 74230C-10 (2009).
[CrossRef]

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O, 63380O-8 (2006).
[CrossRef]

Proceedings (1)

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, Ph. Kräuchi, “Solar fibre optic lights -daylight to office desks and corridors,” Proceedings CISBAT2011, 491–496 (2011).

Sol. Energy (2)

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79(1), 56–64 (2005).
[CrossRef]

A. Kribus, O. Zik, J. Karni, “Optical fibers and solar power generation,” Sol. Energy 68(5), 405–416 (2000).
[CrossRef]

Other (11)

CIE 84–1989 Photocopy Edition 1996, “The measurement of luminous flux”, Technical report, CIE, Austria (1996).

CIE 15:2004 3rd Edition, “Colorimetry”, Technical report, CIE, Austria (2004).

CIE13, 3–1995, “Method of measuring and specifying colour rendering properties of light sources”, Technical report, CIE, Austria (1995).

M.-C. Dubois and Å. Blomsterberg, Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: A literature review. Energy and Buildings (2011), doi:.
[CrossRef]

Y. Yang and X. Shi, “Analysis and evaluation on luminaire efficacy and colour quality of LED downlights”, Proc. of CIE2012 Lighting quality and energy efficiency-conference CIE x037:2012, pp 05, 546–554, (2012).

http://www.lighting.philips.com/main/led/index.wpd and http://www.osram.com/osram_com/products/led-technology/indoor-led-luminaires/index.jsp

L. Edwards and P. Torcellini, A literature review of the effects of natural light on building occupants”, National Renewable Energy Laboratory, Colorado, USA, NREL/TP-550–30769 (2002).

Swedish Meteorological and Hydrological Institute (SMHI), http://www.smhi.se/klimatdata/meteorologi /stralning/normal-solskenstid-for-ett-ar-1.3052, 2011.

Himawari solar fiber optic lighting systems, http://www.himawari-net.co.jp/e_page-index01.html .

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid Solar lighting: Final technical report and results of the field trial program”, U.S. Department of Energy (DOE) Information Bridge, http://www.osti.gov/bridge , ONRL-TM-150, (2008).

The earlier version (SP2) of Parans Solar lighting system, www.parans.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) The solar light collector of the Parans SP3 fiber optic lighting system at the highest place on the roof of The Ångström Laboratory, Uppsala. An additional illuminance sensor is attached on the top of the solar panel for this study. (b) The study hall-corridor area lighted with the fiber luminaires of the system (the electric lights were switched off), shown during a sunny weather of 120 000 lx of direct sun illuminance.

Fig. 2
Fig. 2

(a) Schematic description of the sun light collector and fibre luminaire of the SP3 system. (b) The fiber luminaire without the Spot luminaire L3, shown in picture (c). Most of the tests were performed without the spot luminaires.

Fig. 3
Fig. 3

The configuration of the test site is shown with the illuminance measurement network grid and the luminaire locations. The drawing is constructed in DIALux (v 4.10). Red marked doors are leading to adjacent departments or hall ways and are heavily used during working hours. The green-marked fluorescent lights are constantly on. The white spots indicate the fluorescent luminaires that are dimmed for these tests and the solar fiber optic luminaires are marked by red.

Fig. 4
Fig. 4

Information of the illumination properties of the fluorescent lights at the test site.

Fig. 5
Fig. 5

DIALux simulation of the light distribution at the test site (a) at a sunny day of 112 000 lx direct sun illuminance with the electric lights on at 100%, and (b) during a similar sunny day with the solar lights on and the electric lights dimmed down to 3%. The purple line shows the level of >100 lx illuminance, the yellow line >300 lx and the red line >500 lx.

Fig. 6
Fig. 6

The light distribution at the test site area, measured during four different weather and lighting conditions. (a) Cloudy weather, only emergency lights are on, (b) very cloudy day, the electric lights are 100% on. (c) Sunny weather, the electric lights are 100% on. (d) Sunny weather, the electric lights are dimmed down to 3% level, and the solar fiber optic lights, window and emergency lights are providing the light.

Fig. 7
Fig. 7

The measured output luminous fluxes of the fiber luminaires of the Parans SP3 solar fiber optic lighting system at 10 m and 20 m fiber lengths under various direct sun illuminance.

Fig. 8
Fig. 8

The DIALux manufacturer information of the light distributions and the measured distributions for a solar fiber optic luminaire under 130 000 lx sun illuminance (a) without the L3 spot diffusor and (b) with the L3 spot diffusor, and for the fluorescent lights, (c) Focus Lighting 22022 and (d) Fagerhult 76240 of the tests site.

Fig. 9
Fig. 9

(a) The measured spectra of the solar light obtained from the fiber luminaires at nadir and at 15° angle under a 125 000 lx direct solar illuminance and for the Fagerhult fluorescent lights of the test site. (b) The spectra for 10 m and 20 m fiber distance from the solar collector. (c) The spectrum of the sun, measured under the same conditions as the spectra of solar luminaires (a) - (b).

Fig. 10
Fig. 10

The measured luminous flux of one solar fiber luminaire as a function of the direct sun illuminance measured at the solar collector, during a partly cloudy day with quickly passing clouds.

Fig. 11
Fig. 11

The sunrise and sunset in Uppsala 2012. The yellow area (3954 h) represents the daylight hours between 07:00 and 20:00 o’clock. The pink area represents the total daylight hours of the year (4506 h).

Tables (2)

Tables Icon

Table 1 Illuminated area of the solar luminaires with and without the L3 spot and the two artificial lights at the test site at three illuminance levels, estimated from the data of Fig. 8.

Tables Icon

Table 2 The correlated color temperature (Tc), and color rendering index (Ra) of the light sources in Figs. 9(a)9(c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t s = 250 365.25 3954 4506 1790 h = 1075 h .
t a = 3954 h / y + 1.17 h / d a y 365.25 d a y / y = 4380 h / y .
P 1 = P f t s h ,
P 2 = P a t a + P p t p + P d t s + P f ( t s h t s ) .

Metrics