Abstract

Because of the temporal incoherence of sunlight, solar cells efficiency should depend on the degree of coherence of the incident light. However, numerical computation methods, which are used to optimize these devices, fundamentally consider fully coherent light. Hereafter, we show that the incoherent efficiency of solar cells can be easily analytically calculated. The incoherent efficiency is simply derived from the coherent one thanks to a convolution product with a function characterizing the incoherent light. Our approach is neither heuristic nor empiric but is deduced from first-principle, i.e. Maxwell’s equations. Usually, in order to reproduce the incoherent behavior, statistical methods requiring a high number of numerical simulations are used. With our method, such approaches are not required. Our results are compared with those from previous works and good agreement is found.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tsakalakos, Nanotechnology for Photovoltaics (CRC, 2010).
  2. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
  3. M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
    [CrossRef]
  4. P. Campbell, M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [CrossRef]
  5. E. Yablonovitch, G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE 29, 300–305 (1982).
  6. O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
    [CrossRef]
  7. J. Gjessing, A.S. Sudbø, E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
    [CrossRef]
  8. A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
    [CrossRef]
  9. K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  11. M. Moharam, T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  12. M. Sarrazin, J. P. Vigneron, J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  13. J.P. Vigneron, V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
    [CrossRef]
  14. J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
    [CrossRef]
  15. A. Jin, J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
    [CrossRef]
  16. L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
    [CrossRef]
  17. R. G. Brown, P. Y. C Hwang, Introduction to random signals and applied kalman filtering (John Willey and Sons, 1992).
  18. M. Born, E. Wolf, Principles of optics (Cambridge University Press, 1999).
  19. J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D 33, 3139–3145 (2000).
    [CrossRef]
  20. C.L. Mitsas, D.I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678–1683 (1995).
    [CrossRef] [PubMed]
  21. M.C. Troparevsky, A.S. Sabau, A.R. Lupini, Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Opt. Express 18, 24715–24721 (2010).
    [CrossRef] [PubMed]
  22. A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
    [CrossRef] [PubMed]
  23. C.C. Katsidis, D.I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41, 3978–3987 (2002).
    [CrossRef] [PubMed]
  24. J.S.C. Prentice, “Optical genration rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D 32, 2146–2150 (1999).
    [CrossRef]
  25. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44, 7532–7539 (2005).
    [CrossRef] [PubMed]
  26. W. Lee, S.Y. Lee, J. Kim, S. C. Kim, B. Lee, “A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length,” Opt. Express 20, A941–A953 (2012).
    [CrossRef] [PubMed]
  27. R. Santbergen, A. H.M. Smets, M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21, A262–A267 (2013).
    [CrossRef] [PubMed]
  28. E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. B.O. Seraphin, Solar Energy Conversion, Solid-State Physics Aspects (Springer-Verlag, 1979)
  30. E. Hecht, Optics (Pearson Education, 2002)

2013 (1)

2012 (3)

W. Lee, S.Y. Lee, J. Kim, S. C. Kim, B. Lee, “A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length,” Opt. Express 20, A941–A953 (2012).
[CrossRef] [PubMed]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

2011 (1)

J. Gjessing, A.S. Sudbø, E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

2010 (2)

2009 (1)

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
[CrossRef]

2008 (1)

A. Jin, J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[CrossRef]

2006 (1)

J.P. Vigneron, V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[CrossRef]

2005 (1)

2003 (1)

M. Sarrazin, J. P. Vigneron, J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

2002 (1)

2000 (2)

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D 33, 3139–3145 (2000).
[CrossRef]

M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

1999 (1)

J.S.C. Prentice, “Optical genration rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D 32, 2146–2150 (1999).
[CrossRef]

1995 (2)

C.L. Mitsas, D.I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678–1683 (1995).
[CrossRef] [PubMed]

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

1987 (1)

P. Campbell, M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

1982 (1)

E. Yablonovitch, G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE 29, 300–305 (1982).

1981 (1)

Agustsson, O.

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
[CrossRef]

André, D.

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of optics (Cambridge University Press, 1999).

Brown, R. G.

R. G. Brown, P. Y. C Hwang, Introduction to random signals and applied kalman filtering (John Willey and Sons, 1992).

Campbell, P.

P. Campbell, M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Castiaux, A.

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Centurioni, E.

Cody, G.

E. Yablonovitch, G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE 29, 300–305 (1982).

Decroupet, D.

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
[CrossRef]

Deparis, O.

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
[CrossRef]

Depauw, V.

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

Dereux, A.

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Derycke, I.

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Diao, W.

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

El Daif, O.

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

Forati, F.

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Gaylord, T.

Gharghi, M.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

Gjessing, J.

J. Gjessing, A.S. Sudbø, E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

Gladden, C.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

Green, M.

P. Campbell, M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Pearson Education, 2002)

Herman, A.

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

Hwang, P. Y. C

R. G. Brown, P. Y. C Hwang, Introduction to random signals and applied kalman filtering (John Willey and Sons, 1992).

Jin, A.

A. Jin, J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[CrossRef]

Katsidis, C.C.

Kim, J.

Kim, S. C.

Kunz, K.S.

K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).

Lee, B.

Lee, S.Y.

Lee, W.

Li, H.

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Lousse, V.

J.P. Vigneron, V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[CrossRef]

Luebbers, R.J.

K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).

Lupini, A.R.

Marstein, E.S.

J. Gjessing, A.S. Sudbø, E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

Metselaar, J.

M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Miller, O. D.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

Mitsas, C.L.

Moharam, M.

Nelson, J.

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

Niv, A.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Phillips, J.

A. Jin, J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[CrossRef]

Prentice, J. S. C.

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D 33, 3139–3145 (2000).
[CrossRef]

Prentice, J.S.C.

J.S.C. Prentice, “Optical genration rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D 32, 2146–2150 (1999).
[CrossRef]

Sabau, A.S.

Santbergen, R.

Sarrazin, M.

M. Sarrazin, J. P. Vigneron, J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Schropp, R.E.I.

M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Seraphin, B.O.

B.O. Seraphin, Solar Energy Conversion, Solid-State Physics Aspects (Springer-Verlag, 1979)

Siapkas, D.I.

Smets, A. H.M.

Sudbø, A.S.

J. Gjessing, A.S. Sudbø, E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Trompoukis, C.

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

Troparevsky, M.C.

Tsakalakos, L.

L. Tsakalakos, Nanotechnology for Photovoltaics (CRC, 2010).

van Swaaij, R.A.C.M.M.

M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Vigneron, J. P.

M. Sarrazin, J. P. Vigneron, J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Vigneron, J.P.

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
[CrossRef]

J.P. Vigneron, V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[CrossRef]

Vigoureux, J. M.

M. Sarrazin, J. P. Vigneron, J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Wang, W.

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of optics (Cambridge University Press, 1999).

Yablonovitch, E.

E. Yablonovitch, G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE 29, 300–305 (1982).

Zeman, M.

R. Santbergen, A. H.M. Smets, M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21, A262–A267 (2013).
[CrossRef] [PubMed]

M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

Zhang, X.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

Zhang, Z.

Zhao, L.

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Zhou, C.

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Zuo, Y.

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Appl. Opt. (3)

IEEE (1)

E. Yablonovitch, G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE 29, 300–305 (1982).

J. Appl. Phys. (5)

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106, 094505 (2009).
[CrossRef]

J. Gjessing, A.S. Sudbø, E.S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

A. Herman, C. Trompoukis, V. Depauw, O. El Daif, O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys. 112, 113107 (2012).
[CrossRef]

M. Zeman, R.A.C.M.M. van Swaaij, J. Metselaar, R.E.I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000).
[CrossRef]

P. Campbell, M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (2)

J. S. C. Prentice, “Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures,” J. Phys. D 33, 3139–3145 (2000).
[CrossRef]

J.S.C. Prentice, “Optical genration rate of electron-hole pairs in multilayer thin-film photovoltaic cells,” J. Phys. D 32, 2146–2150 (1999).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

M. Sarrazin, J. P. Vigneron, J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, X. Zhang, “Near-Field Electromagnetic Theory for Thin Solar Cells,” Phys. Rev. Lett. 109, 138701 (2012).
[CrossRef] [PubMed]

Proc. SPIE (1)

J.P. Vigneron, V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[CrossRef]

Sol. Energy (1)

L. Zhao, Y. Zuo, C. Zhou, H. Li, W. Diao, W. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Jin, J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92, 1689–1696 (2008).
[CrossRef]

Ultramicroscopy (1)

J. P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[CrossRef]

Other (9)

R. G. Brown, P. Y. C Hwang, Introduction to random signals and applied kalman filtering (John Willey and Sons, 1992).

M. Born, E. Wolf, Principles of optics (Cambridge University Press, 1999).

E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

B.O. Seraphin, Solar Energy Conversion, Solid-State Physics Aspects (Springer-Verlag, 1979)

E. Hecht, Optics (Pearson Education, 2002)

L. Tsakalakos, Nanotechnology for Photovoltaics (CRC, 2010).

J. Nelson, The Physics of Solar Cells (Imperial College, 2003).

K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics