Abstract

The effect of the relative lateral displacement between the front and back sinusoidal textured layers of a conformal grating solar cell on light trapping was investigated. For various amount of relative lateral displacements and thicknesses of the active layer, the external quantum efficiency (EQE) of the misaligned solar cell structures and their EQE enhancement relative to the aligned structure were studied. For both aligned and misaligned solar cell structures, the electric field distribution at the wavelength corresponding to the EQE peaks was analyzed, and the corresponding guided modes were identified. Additional modes were observed in the misaligned grating structures. A 25.1 times enhancement of the EQE at the wavelength of 950 nm and an average of 2.2 times enhancement in the wavelength range from 700 to 900 nm were observed. For the misaligned grating structure with the phase shift β = π/4 and the active layer thickness DSi = 230 nm, a maximum short circuit current density Jsc enhancement of 34% was achieved for normal incidence, and a short circuit current enhancement of more than 15% was obtained for the incident angle between −15° and + 15°.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Haase, H. Stiebig, “Optical properties of thin-filin silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
    [CrossRef]
  2. R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [CrossRef]
  3. D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
    [CrossRef] [PubMed]
  4. S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells,” J. Phys. D Appl. Phys. 44(5), 055103 (2011).
    [CrossRef]
  5. M. Wellenzohn, R. Hainberger, “Light trapping by backside diffraction gratings in silicon solar cells revisited,” Opt. Express 20(S1), A20–A27 (2012).
    [CrossRef] [PubMed]
  6. A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
    [CrossRef]
  7. A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
    [CrossRef]
  8. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
    [CrossRef] [PubMed]
  9. C. Li, L. Xia, H. Gao, R. Shi, C. Sun, H. Shi, C. Du, “Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays,” Opt. Express 20(S5Suppl 5), A589–A596 (2012).
    [CrossRef] [PubMed]
  10. H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
    [CrossRef] [PubMed]
  11. F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
    [CrossRef] [PubMed]
  12. S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
    [CrossRef]
  13. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  14. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
    [CrossRef]
  15. S. A. Boden, D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
    [CrossRef]
  16. A. Yanai, U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B 27(8), 1523–1529 (2010).
    [CrossRef]
  17. H. Y. Song, S. Kim, R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17(26), 23544–23555 (2009).
    [CrossRef] [PubMed]
  18. H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
    [CrossRef]
  19. T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
    [CrossRef]
  20. W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
    [CrossRef]
  21. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
    [CrossRef] [PubMed]
  22. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [CrossRef] [PubMed]
  23. L. X. Shi, Z. Zhou, B. S. Tang, “Full-band absorption enhancement in ultrathin-film solar cells through the excitation of multiresonant guided modes,” Appl. Opt. 51(13), 2436–2440 (2012).
    [CrossRef] [PubMed]
  24. Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  25. X. Sheng, S. G. Johnson, J. Michel, L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
    [CrossRef] [PubMed]
  26. E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [CrossRef]
  27. A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
    [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  29. Refractive index database”, retrieved 2012, http://refractiveindex.info .
  30. Rsoft, “DiffractMod” (2010), retrieved 2010, www.rsoftdesign.com/ .
  31. NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5”, retrieved 2012, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  32. Y. Ding, R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004).
    [CrossRef] [PubMed]
  33. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  34. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34(14), 2414–2420 (1995).
    [CrossRef] [PubMed]
  35. A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (Oxford University Press, 2007).
  36. S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
    [CrossRef]
  37. K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
    [CrossRef]

2012 (6)

2011 (10)

A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[CrossRef] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[CrossRef] [PubMed]

A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[CrossRef]

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells,” J. Phys. D Appl. Phys. 44(5), 055103 (2011).
[CrossRef]

2010 (6)

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

S. A. Boden, D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[CrossRef]

A. Yanai, U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B 27(8), 1523–1529 (2010).
[CrossRef]

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

2009 (2)

H. Y. Song, S. Kim, R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17(26), 23544–23555 (2009).
[CrossRef] [PubMed]

R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

2008 (1)

2006 (1)

C. Haase, H. Stiebig, “Optical properties of thin-filin silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

2004 (2)

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

Y. Ding, R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004).
[CrossRef] [PubMed]

2001 (1)

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

1998 (1)

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

1995 (1)

1993 (1)

Abass, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

Alù, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Atwater, H. A.

Bagnall, D. M.

S. A. Boden, D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[CrossRef]

Ballif, C.

Beck, F. J.

S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells,” J. Phys. D Appl. Phys. 44(5), 055103 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

Bienstman, P.

A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

Boden, S. A.

S. A. Boden, D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[CrossRef]

Brett, M. J.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Burgelman, M.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Cai, S.

T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[CrossRef]

Cai, T.

T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[CrossRef]

Catchpole, K. R.

Chutinan, A.

A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Dewan, R.

D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
[CrossRef] [PubMed]

R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Ding, Y.

Drouard, E.

Du, C.

Elwenspoek, M.

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

Engheta, N.

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

Fainman, Y.

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

Fan, S.

Fave, A.

Ferry, V. E.

Fujikawa, H.

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

Gao, H.

Gomard, G.

Green, M. A.

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

Haase, C.

C. Haase, H. Stiebig, “Optical properties of thin-filin silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Hainberger, R.

Haug, F.-J.

Herzig, H. P.

Iizuka, H.

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

Johnson, S. G.

Kherani, N. P.

A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Kim, O. N.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Kim, S.

Kimerling, L. C.

Knipp, D.

D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
[CrossRef] [PubMed]

R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Krijnen, G.

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

Kuiper, S.

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

Le, K. Q.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Levy, U.

Li, C.

Li, C. W. W.

A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Li, H. B. T.

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Madzharov, D.

Maes, B.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

Magnusson, R.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Masuda, H.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Meng, X.

Michel, J.

Mokkapati, S.

S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells,” J. Phys. D Appl. Phys. 44(5), 055103 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

Nakagawa, W.

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

Nakai, Y.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Naqavi, A.

Nijdam, W.

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

Paeder, V.

Peretti, R.

Pillai, S.

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

Polman, A.

Raman, A.

Rijn, C.

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

Robbie, K.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Sang, T.

T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[CrossRef]

Sato, K.

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

Scharf, T.

Schropp, R. E. I.

Seassal, C.

Shen, H.

Shen, H. H.

A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

Sheng, X.

Shi, H.

Shi, L. X.

Shi, R.

Sit, J. C.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Söderström, K.

Song, H. Y.

Stiebig, H.

C. Haase, H. Stiebig, “Optical properties of thin-filin silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Sun, C.

Takeda, Y.

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

Tang, B. S.

Tokimitsu, T.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Verhagen, E.

Verschuuren, M. A.

Walters, R. J.

Wang, S. S.

Wang, Z.

T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[CrossRef]

Wellenzohn, M.

Wolferen, H.

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

Xia, L.

Yamada, N.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Yanai, A.

Yu, Z.

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Zhou, Z.

Zukotynski, S.

A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett. 97(5), 053108 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

J. Appl. Phys. (2)

R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

A. Abass, H. H. Shen, P. Bienstman, B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[CrossRef]

J. Micromech. Microeng. (1)

S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng. 11(1), 33–37 (2001).
[CrossRef]

J. Opt. (1)

T. Sang, T. Cai, S. Cai, Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells,” J. Phys. D Appl. Phys. 44(5), 055103 (2011).
[CrossRef]

A. Chutinan, C. W. W. Li, N. P. Kherani, S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Opt. Express (12)

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[CrossRef] [PubMed]

D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
[CrossRef] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[CrossRef] [PubMed]

H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

M. Wellenzohn, R. Hainberger, “Light trapping by backside diffraction gratings in silicon solar cells revisited,” Opt. Express 20(S1), A20–A27 (2012).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

C. Li, L. Xia, H. Gao, R. Shi, C. Sun, H. Shi, C. Du, “Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays,” Opt. Express 20(S5Suppl 5), A589–A596 (2012).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

H. Y. Song, S. Kim, R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17(26), 23544–23555 (2009).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Prog. Photovolt. Res. Appl. (3)

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

S. A. Boden, D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[CrossRef]

C. Haase, H. Stiebig, “Optical properties of thin-filin silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Refractive index database”, retrieved 2012, http://refractiveindex.info .

Rsoft, “DiffractMod” (2010), retrieved 2010, www.rsoftdesign.com/ .

NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5”, retrieved 2012, http://rredc.nrel.gov/solar/spectra/am1.5/ .

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (Oxford University Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the thin film silicon solar cell with misaligned conformal grating structure, where A-B, B- C, C- D, D –E, E- F, and F- G denote the region of the transparent conducting ZnO layer, the sinusoidal front grating layer, the silicon absorption layer, the back grating layer, the ZnO layer, and the Ag layer, respectively.

Fig. 2
Fig. 2

External quantum efficiency as a function of wavelengths for different lateral displacement when DSi = 300 nm.

Fig. 3
Fig. 3

External quantum efficiency as a function of wavelengths and silicon active layer thickness for (a) β = 0 and (b) β = π/4

Fig. 4
Fig. 4

The electric field distribution for different modes of the misaligned grating structure (β = π/4); (a) λ = 1085 nm, (b) λ = 990 nm, (c) λ = 950 nm, and (d) λ = 930 nm.

Fig. 5
Fig. 5

External quantum efficiency enhancement for the misaligned grating structure (β = π/4) when DSi = 300 nm.

Fig. 6
Fig. 6

Jsc enhancement as a function of DSi and β when the height of the grating d = 300 nm and the period p = 600 nm.

Fig. 7
Fig. 7

Jsc and Jsc enhancement as functions of incident angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J sc =e λ hc EQE(λ) I AM1.5 (λ)dλ,
λ p n s ,

Metrics