Abstract

3D photonic crystals, such as opals, have been shown to have a high potential to increase the efficiency of solar cells by enabling advanced light management concepts. However, methods which comply with the demands of the photovoltaic industry for integration of these structures, i. e. the fabrication in a low-cost, fast, and large-scale manner, are missing up to now. In this work, we present the spray coating of a colloidal suspension on textured substrates and subsequent drying. We fabricated opaline films of much larger lateral dimensions and in much shorter times than what is possible using conventional opal fabrication methods.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhabited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.
  4. A. N. Sprafke, R. B. Wehrspohn, “Light trapping concepts for photon management in solar cells,” Green 2(4), 177–187 (2012).
    [CrossRef]
  5. A. S. Dimitrov, K. Nagayama, “Continous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12, 1303–1311 (1996).
    [CrossRef]
  6. A. Mihi, M. Ocana, H. Miguez, “Oriented colloidal-crystal thin films by spin coating microspheres dispersed in volotile media,” Adv. Mater. 18, 2244–2249 (2006).
    [CrossRef]
  7. D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
    [CrossRef]
  8. J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
    [CrossRef] [PubMed]
  9. D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
    [CrossRef]
  10. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
    [CrossRef] [PubMed]
  11. M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
    [CrossRef]
  12. M. Egen, R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: Towards monodisperse colloids for polymer opals,” Macromol. Chem. Phys. 205, 1479–1488 (2004).
    [CrossRef]
  13. K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
    [CrossRef]

2012 (1)

A. N. Sprafke, R. B. Wehrspohn, “Light trapping concepts for photon management in solar cells,” Green 2(4), 177–187 (2012).
[CrossRef]

2011 (1)

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

2008 (1)

K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
[CrossRef]

2006 (2)

A. Mihi, M. Ocana, H. Miguez, “Oriented colloidal-crystal thin films by spin coating microspheres dispersed in volotile media,” Adv. Mater. 18, 2244–2249 (2006).
[CrossRef]

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

2004 (2)

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

M. Egen, R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: Towards monodisperse colloids for polymer opals,” Macromol. Chem. Phys. 205, 1479–1488 (2004).
[CrossRef]

2003 (1)

M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
[CrossRef]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

1996 (1)

A. S. Dimitrov, K. Nagayama, “Continous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12, 1303–1311 (1996).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhabited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Allard, D.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

Arlinghaus, E. G.

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

Beckers, T.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Bielawny, A.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
[CrossRef]

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Bittkau, K.

K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Bläsi, B.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Carius, R.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
[CrossRef]

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Dimitrov, A. S.

A. S. Dimitrov, K. Nagayama, “Continous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12, 1303–1311 (1996).
[CrossRef]

Egen, M.

M. Egen, R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: Towards monodisperse colloids for polymer opals,” Macromol. Chem. Phys. 205, 1479–1488 (2004).
[CrossRef]

M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
[CrossRef]

Fahr, S.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Fleischhaker, F.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

Glunz, S. W.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Goldschmidt, J. C.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Griesbock, B.

M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
[CrossRef]

Hauser, H.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Heiny, R.

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

Hermle, M.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kirchartz, T.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Kroll, M.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Lange, B.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

Lederer, F.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Löper, P.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Meng, L.

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Miguez, H.

A. Mihi, M. Ocana, H. Miguez, “Oriented colloidal-crystal thin films by spin coating microspheres dispersed in volotile media,” Adv. Mater. 18, 2244–2249 (2006).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Mihi, A.

A. Mihi, M. Ocana, H. Miguez, “Oriented colloidal-crystal thin films by spin coating microspheres dispersed in volotile media,” Adv. Mater. 18, 2244–2249 (2006).
[CrossRef]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Nagayama, K.

A. S. Dimitrov, K. Nagayama, “Continous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12, 1303–1311 (1996).
[CrossRef]

Norris, D. J.

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

Ocana, M.

A. Mihi, M. Ocana, H. Miguez, “Oriented colloidal-crystal thin films by spin coating microspheres dispersed in volotile media,” Adv. Mater. 18, 2244–2249 (2006).
[CrossRef]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Pertsch, T.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Peters, M.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Rau, U.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Rockstuhl, C.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Scriven, L. E.

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

Sprafke, A. N.

A. N. Sprafke, R. B. Wehrspohn, “Light trapping concepts for photon management in solar cells,” Green 2(4), 177–187 (2012).
[CrossRef]

Steidl, L.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Üpping, J.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Voss, R.

M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
[CrossRef]

Wehrspohn, R. B.

A. N. Sprafke, R. B. Wehrspohn, “Light trapping concepts for photon management in solar cells,” Green 2(4), 177–187 (2012).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
[CrossRef]

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Willeke, G.

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Wulf, M.

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhabited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Zentel, R.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

M. Egen, R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: Towards monodisperse colloids for polymer opals,” Macromol. Chem. Phys. 205, 1479–1488 (2004).
[CrossRef]

M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
[CrossRef]

Adv. Mater. (3)

A. Mihi, M. Ocana, H. Miguez, “Oriented colloidal-crystal thin films by spin coating microspheres dispersed in volotile media,” Adv. Mater. 18, 2244–2249 (2006).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16, 1393–1399 (2004).
[CrossRef]

Chem. Mater. (1)

M. Egen, R. Voss, B. Griesbock, R. Zentel, “Heterostructures of polymer photonic crystal films,” Chem. Mater. 15, 3786–3792 (2003).
[CrossRef]

Green (1)

A. N. Sprafke, R. B. Wehrspohn, “Light trapping concepts for photon management in solar cells,” Green 2(4), 177–187 (2012).
[CrossRef]

J Mater Sci: Mater Electron (1)

K. Bittkau, R. Carius, A. Bielawny, R. B. Wehrspohn, “Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy,” J Mater Sci: Mater Electron 19, 203–207 (2008)
[CrossRef]

Langmuir (1)

A. S. Dimitrov, K. Nagayama, “Continous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12, 1303–1311 (1996).
[CrossRef]

Macromol. Chem. Phys. (1)

M. Egen, R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: Towards monodisperse colloids for polymer opals,” Macromol. Chem. Phys. 205, 1479–1488 (2004).
[CrossRef]

Nature (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhabited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Soft Materials (1)

D. Allard, B. Lange, F. Fleischhaker, R. Zentel, M. Wulf, “Opaline effect pigments by spray induced self-assembly on porous substrates,” Soft Materials 3(23), 121–131 (2006).
[CrossRef]

Other (1)

M. Peters, A. Bielawny, B. Bläsi, R. Carius, S. W. Glunz, J. C. Goldschmidt, H. Hauser, M. Hermle, T. Kirchartz, P. Löper, J. Üpping, R. B. Wehrspohn, G. Willeke, Photonic Concepts for Solar Cells in Physics of Nanostructured Solar Cells (V. Badescu, M. Paulescu, eds., Nova Science Pub, Inc., 2009), pp. 1–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the fabrication process of an artificial opal by spray coating.

Fig. 2
Fig. 2

Course of the drying sequence on a glass substrate. In this example, an approximately 10 × 15cm2 opal has formed after 70 min. on a 15 × 21cm2 glass substrate.

Fig. 3
Fig. 3

(a) Reflectance spectra of the spray coating deposited opaline film from the inner (full line) and outer region of the substrate which is presented in Fig. 2. SEM cross-sectional views: Cross-section of the (a) inner region (5000x magnification) and (b) outer region (7500x magnification).

Fig. 4
Fig. 4

Cracks in the opaline structure: (a) Optical microscope image in reflection (200x magnification), (b) SEM image (10000x magnification).

Fig. 5
Fig. 5

Samples prepared with different concentrations of the colloidal dispersion: (a) 19%, (b) 10% and (c) 5% by weight.

Fig. 6
Fig. 6

(a) Reflectance and (b) thickness of the opaline films prepared with colloidal dispersions of varying solid content.

Fig. 7
Fig. 7

Artificial opal deposited onto aluminium foil: (a) SEM top view (300x magnification), (b) SEM cross-sectional view (13000x magnification).

Fig. 8
Fig. 8

Possible implementations of a backside foil on solar cells. The backside foil is applied to the backside of the absorber. (a) Photonic crystal structure (here: inverted opal) consists of a electrically conducting material and the foil acts as a large scale backside contact. (b) Photonic crystal structure (here: opal) is isolating, electrical contacts are laser-fired into the absorber material.

Tables (1)

Tables Icon

Table 1 Surface tension and vapor pressure of several solvents.

Metrics