Abstract

Photon management aims at optimizing the solar cell efficiency by, e.g., incorporating supporting optical nanostructures for absorption enhancement. Their geometrical design, however, is usually a compromise since requirements in different spectral domains need to be accommodated. This issue can be mitigated if multiple optical nanostructures are integrated. Here, we present a photon management scheme that combines the benefits of a randomly textured surface and an opaline photonic crystal. Moreover, upon considering the device with an increasing complexity, we show that a structure that respects the mutual fabrication constraints has the best performance, i.e., a device where the photonic crystal is not perfect but to some extent amorphous as enforced by the presence of the texture.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).
    [CrossRef]
  2. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
    [CrossRef]
  3. E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
    [CrossRef]
  4. R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
    [CrossRef]
  5. S. Zanotto, M. Liscidini, L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18, 4260–4274 (2010).
    [CrossRef] [PubMed]
  6. S. A. Mann, R. R. Grote, R. M. Osgood, J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011).
    [CrossRef]
  7. A. Bozzola, M. Liscidini, L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1d and 2d periodic patterns,” Opt. Express 20, A224–A244 (2012).
    [CrossRef] [PubMed]
  8. L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
    [CrossRef]
  9. C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
    [CrossRef]
  10. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  11. S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010).
    [CrossRef]
  12. F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
    [CrossRef]
  13. P. Bermel, C. Luo, L. Zeug, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
    [CrossRef] [PubMed]
  14. A. Bielawny, C. Rockstuhl, F. Lederer, R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
    [CrossRef] [PubMed]
  15. S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
    [CrossRef]
  16. R. B. Wehrspohn, J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt 14, 024003 (2012).
    [CrossRef]
  17. J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
    [CrossRef] [PubMed]
  18. J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
    [CrossRef]
  19. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
    [PubMed]
  20. A. Hoffmann, IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany (optical data can be provided upon request, contact a.hoffmann@fz-juelich.de).
  21. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
    [CrossRef]
  22. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
    [CrossRef]
  23. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  24. L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  25. A. Donges, “The coherence length of black-body radiation,” Eur. J. Phys. 19, 245–249 (1998).
    [CrossRef]
  26. ASTM Standard G173-03 URL: http://www.astm.org .

2012 (7)

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

R. B. Wehrspohn, J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt 14, 024003 (2012).
[CrossRef]

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

A. Bozzola, M. Liscidini, L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1d and 2d periodic patterns,” Opt. Express 20, A224–A244 (2012).
[CrossRef] [PubMed]

2011 (4)

S. A. Mann, R. R. Grote, R. M. Osgood, J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011).
[CrossRef]

F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

2010 (3)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010).
[CrossRef]

S. Zanotto, M. Liscidini, L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18, 4260–4274 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

2007 (2)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeug, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[CrossRef] [PubMed]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).
[CrossRef]

2005 (1)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

1998 (1)

A. Donges, “The coherence length of black-body radiation,” Eur. J. Phys. 19, 245–249 (1998).
[CrossRef]

1997 (1)

1982 (1)

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[CrossRef]

1981 (1)

Agrawal, M.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Andreani, L. C.

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Ballif, C.

F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
[CrossRef]

Barnard, E. S.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Beckers, T.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Berginski, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Bermel, P.

Bielawny, A.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

A. Bielawny, C. Rockstuhl, F. Lederer, R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[CrossRef] [PubMed]

Bozzola, A.

Brongersma, M. L.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Carius, R.

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Cody, G. D.

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[CrossRef]

Dewan, R.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Donges, A.

A. Donges, “The coherence length of black-body radiation,” Eur. J. Phys. 19, 245–249 (1998).
[CrossRef]

Fahr, S.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Füchsel, K.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

Gaylord, T. K.

Green, M. A.

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010).
[CrossRef]

Grote, R. R.

Güdel, H. U.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

Haug, F.-J.

F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
[CrossRef]

Hoffmann, A.

A. Hoffmann, IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany (optical data can be provided upon request, contact a.hoffmann@fz-juelich.de).

Hu, B.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

Hu, Y.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

Hüpkes, J.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Joannopoulos, J. D.

Jovanov, V.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Käsebier, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

Kimerling, L. C.

Kley, E.-B.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

Knipp, D.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Krämer, K. W.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

Kroll, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Lederer, F.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

A. Bielawny, C. Rockstuhl, F. Lederer, R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Lee, S.-T.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

Li, L.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

Liscidini, M.

Luo, C.

Madzharov, D.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Mallick, S. B.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Mann, S. A.

Moharam, M. G.

Naqavi, A.

F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
[CrossRef]

Osgood, R. M.

Otto, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Owen, J. I.

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

Peng, K.-Q.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

Pertsch, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Peumans, P.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Pillai, S.

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Rau, U.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Rech, B.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

Rockstuhl, C.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

A. Bielawny, C. Rockstuhl, F. Lederer, R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[CrossRef] [PubMed]

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Salzer, R.

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Schuller, J. A.

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Shalav, A.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

Singh, K. K.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Söderström, T.

F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
[CrossRef]

Steidl, L.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Stiebig, H.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

Tünnermann, A.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

Üpping, J.

R. B. Wehrspohn, J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt 14, 024003 (2012).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Visser, R. J.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Vynck, K.

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Wang, X.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

Wangperawong, A.

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

Wehrspohn, R. B.

R. B. Wehrspohn, J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt 14, 024003 (2012).
[CrossRef]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

A. Bielawny, C. Rockstuhl, F. Lederer, R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17, 8439–8446 (2009).
[CrossRef] [PubMed]

Wiersma, D. S.

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

Wu, X.-L.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[CrossRef]

Zanotto, S.

Zentel, R.

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Zeug, L.

Adv. Mater. (1)

J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23, 3896–3900 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

S. B. Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100, 053113 (2012).
[CrossRef]

R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett. 101, 103903 (2012).
[CrossRef]

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett. 100, 223902 (2012).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4 : Er3+ up-converting phosphors for enhanced nearinfrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505 (2005).
[CrossRef]

Eur. J. Phys. (1)

A. Donges, “The coherence length of black-body radiation,” Eur. J. Phys. 19, 245–249 (1998).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[CrossRef]

J. Appl. Phys. (3)

F.-J. Haug, T. Söderström, A. Naqavi, C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109, 084516 (2011).
[CrossRef]

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, “The effect of front zno:al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007).
[CrossRef]

J. Opt (1)

R. B. Wehrspohn, J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt 14, 024003 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Mater. (2)

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Photonics Nanostruct. Fund. Appl. (1)

J. Üpping, R. Salzer, M. Otto, T. Beckers, L. Steidl, R. Zentel, R. Carius, R. B. Wehrspohn, “Transparent conductive oxide photonic crystals on textured substrates,” Photonics Nanostruct. Fund. Appl. 9, 31–34 (2011).
[CrossRef]

Proc. SPIE 8438, Photonics for Solar Energy Systems IV (1)

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. B. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, “Black silicon for solar cell applications,” in Proc. SPIE 8438, Photonics for Solar Energy Systems IV, 843817 (2012).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

S. Pillai, M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010).
[CrossRef]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).
[CrossRef]

Other (2)

A. Hoffmann, IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany (optical data can be provided upon request, contact a.hoffmann@fz-juelich.de).

ASTM Standard G173-03 URL: http://www.astm.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two dimensional sketch of the considered geometry. Shown in red is the conformally textured μc-Si:H layer. On top of it spheres are dropped onto the surface. The spheres constitute air voids which are cut out of the Zno host (blue region). The long range order gradually converges from an amorphous arrangement to perfect periodicity. Normal incidence illumination is from below.

Fig. 2
Fig. 2

(a) Absorptance spectrum of an unstructured layer for various thicknesses d. (b) Reflectance spectrum of a four layer inverted opal (red line) and bandstructure of an inverted opal (blue dotted lines).

Fig. 3
Fig. 3

(a) Absorptance spectrum of a 1 μm thick μc-Si:H layer (blue line) and reflectance spectra for a 4-layer inverted ZnO opal for a sphere radius of 325 nm (red dashed line) and a radius of 140 nm (red solid line). Diffraction efficiencies in reflection at a wavelength of 639 nm [marked by the black dashed line in (a)] for a radius of 140 nm (b) and 325 nm (c).

Fig. 4
Fig. 4

(a) Absorptance spectra for different geometries. The layer thickness is 1 μm and the sphere radius is 325 nm. (b) Normalized short circuit current densities for the absorptance spectra form (a). Circles are values normalized by the flat μc-Si:H layer and crosses show the values normalized using a silver back contact.

Fig. 5
Fig. 5

Normalized short circuit current densities as a function of thickness. Normalization is done by the silver back contact geometry.

Tables (1)

Tables Icon

Table 1 Short circuit current densities in the diffractive mode for a 1 μm thick μc-Si:H layer

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J SC = e 0 A ( λ ) Φ ( λ ) d λ ,

Metrics