Abstract

Thin film solar cells benefit significantly from the enhanced light trapping offered by photonic nanostructures. The thin film is typically patterned on one side only due to technological constraints. The ability to independently pattern both sides of the thin film increases the degrees of freedom available to the designer, as different functions can be combined, such as the reduction of surface reflection and the excitation of quasiguided modes for enhanced light absorption. Here, we demonstrate a technique based on simple layer transfer that allows us to independently pattern both sides of the thin film leading to enhanced light trapping. We used a 400 nm thin film of amorphous hydrogenated silicon and two simple 2D gratings for this proof-of-principle demonstration. Since the technique imposes no restrictions on the design parameters, any type of structure can be made.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
    [CrossRef]
  2. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
    [CrossRef]
  3. A. Bozzola, M. Liscidini, L. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20 (S2Suppl 2), A224–A244 (2012).
  4. P. Kowalczewski, M. Liscidini, L. C. Andreani, “Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett. 37(23), 4868–4870 (2012).
    [CrossRef] [PubMed]
  5. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  6. L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
    [CrossRef]
  7. E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [CrossRef]
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  9. K. R. Catchpole, M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys. 101(6), 063105 (2007).
    [CrossRef]
  10. P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579 (1983).
    [CrossRef]
  11. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
    [CrossRef] [PubMed]
  12. D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
    [CrossRef] [PubMed]
  13. M. A. Tsai, H. W. Han, Y. L. Tsai, P. C. Tseng, P. Yu, H. C. Kuo, C. H. Shen, J. M. Shieh, S. H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express 19(S4Suppl 4), A757–A762 (2011).
    [CrossRef] [PubMed]
  14. K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [CrossRef] [PubMed]
  15. A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
    [CrossRef]
  16. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
    [CrossRef] [PubMed]
  17. Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  18. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
    [CrossRef]
  19. C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
    [CrossRef]
  20. O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).
  21. C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
    [CrossRef]
  22. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]
  23. G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
    [CrossRef]
  24. M. Agio, L. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B 61(23), 15519–15522 (2000).
    [CrossRef]
  25. M. Liscidini, D. Gerace, L. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
    [CrossRef]
  26. C. Heine, R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  27. G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
    [CrossRef] [PubMed]

2012

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

A. Bozzola, M. Liscidini, L. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20 (S2Suppl 2), A224–A244 (2012).

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

P. Kowalczewski, M. Liscidini, L. C. Andreani, “Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett. 37(23), 4868–4870 (2012).
[CrossRef] [PubMed]

2011

2010

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

2009

2008

M. Liscidini, D. Gerace, L. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

2007

K. R. Catchpole, M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys. 101(6), 063105 (2007).
[CrossRef]

2006

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

2001

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
[CrossRef]

2000

M. Agio, L. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B 61(23), 15519–15522 (2000).
[CrossRef]

1995

1992

G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1983

P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579 (1983).
[CrossRef]

1980

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[CrossRef]

Abass, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Abelson, J. R.

G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
[CrossRef] [PubMed]

Agio, M.

M. Agio, L. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B 61(23), 15519–15522 (2000).
[CrossRef]

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Alù, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Andreani, L.

A. Bozzola, M. Liscidini, L. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20 (S2Suppl 2), A224–A244 (2012).

M. Liscidini, D. Gerace, L. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

M. Agio, L. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B 61(23), 15519–15522 (2000).
[CrossRef]

Andreani, L. C.

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Bloch, A. N.

P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579 (1983).
[CrossRef]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Borg, H.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Bozzola, A.

Burgelman, M.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Campa, A.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Catchpole, K. R.

K. R. Catchpole, M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys. 101(6), 063105 (2007).
[CrossRef]

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Cui, Y.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Dewan, R.

Diao, H. W.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

Drouard, E.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Fan, S.

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Fave, A.

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Feng, G. F.

G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
[CrossRef] [PubMed]

Franken, R.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Gerace, D.

M. Liscidini, D. Gerace, L. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Gerelli, E.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Gomard, G.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

Green, M. A.

K. R. Catchpole, M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys. 101(6), 063105 (2007).
[CrossRef]

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
[CrossRef]

Haase, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Hajjam, K. E.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Han, H. W.

Haug, F.

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Heijna, M.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Heine, C.

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[CrossRef]

Hsu, C.

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Isabella, O.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Katiyar, M.

G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
[CrossRef] [PubMed]

Knipp, D.

Kowalczewski, P.

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Kuo, H. C.

Le, K. Q.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Lemiti, M.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Li, H. L.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Lin, S. H.

Liscidini, M.

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Madzharov, D.

Maes, B.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Maley, N.

G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
[CrossRef] [PubMed]

Marinkovic, M.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Meng, X.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

Morf, R. H.

Müller, J.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

Noriega, R.

Orobtchouk, R.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Pahud, C.

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Peretti, R.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

Phadke, S.

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Raman, A.

Ruan, Z.

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Salleo, A.

Seassal, C.

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Senoussaoui, N.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

Shen, C. H.

Sheng, P.

P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579 (1983).
[CrossRef]

Shieh, J. M.

Sipe, J. E.

M. Liscidini, D. Gerace, L. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Soppe, W.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Stepleman, R. S.

P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579 (1983).
[CrossRef]

Stiebig, H.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Tsai, M. A.

Tsai, Y. L.

Tseng, P. C.

Van Erven, A.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Wang, A.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
[CrossRef]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Wang, W. J.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

Wenham, S. R.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yu, P.

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Zahren, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

Zeman, M.

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Zhao, J.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
[CrossRef]

Zhao, L.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

Zhou, C. L.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Zuo, Y. H.

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

ACS Nano

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Adv. Energy Mater.

C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater. 2(6), 628–633 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579 (1983).
[CrossRef]

J. Appl. Phys.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[CrossRef]

K. R. Catchpole, M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys. 101(6), 063105 (2007).
[CrossRef]

J. Opt.

G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[CrossRef]

Nano Lett.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

M. Agio, L. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B 61(23), 15519–15522 (2000).
[CrossRef]

M. Liscidini, D. Gerace, L. Andreani, J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter

G. F. Feng, M. Katiyar, J. R. Abelson, N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter 45(16), 9103–9107 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006).
[CrossRef]

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Sol. Energy

L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84(1), 110–115 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 65(1–4), 9–16 (2001).
[CrossRef]

Other

O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron microscopy (SEM) images of the 2D dual interface grating (a) The bottom grating is a photonic lattice of SiO2 holes in a-Si:H with a period of 300 nm. The measured hole diameter and nominal etching depth are 240 nm and 60 nm, respectively. (b) The hole diameter of the top grating is set to 300 nm, which is also the lattice period, such that the air holes touch each other. The top grating therefore resembles a chessboard lattice [24], i.e. star-like columns of a-Si:H in air. The nominal etch depth is 80 nm.

Fig. 2
Fig. 2

(a) Microscope image (top view) of the fabricated 2D dual interface grating in a 400 nm thick a-Si:H slab on glass. The top and bottom grating are independently patterned by e-beam lithography. The two gratings can be clearly identified, as they have been off-set to facilitate individual characterisation. (b) Cross-sectional scheme of the fabricated structure.

Fig. 3
Fig. 3

Measured absorption characteristics of the unpatterned a-Si:H film deposited by plasma enhanced chemical vapor deposition (PECVD). The 400 nm thin film is characterised with a white light laser source and an integrating sphere.

Fig. 4
Fig. 4

Measured absorption characteristics of the patterned a-Si:H film. The measurements are taken with a white light laser source and an integrating sphere (solid line) and afterwards compared to numerical results (dashed line). (a) The measured spectrum for Fig. 1(a) is in excellent agreement with the simulated spectrum, while for the top grating of Fig. 1(b) we observe disagreement in the short-wavelength range. We think this discrepancy is due to the lattice structure used in the simulations, since the top grating is not perfectly described by either a lattice of circular holes or a chessboard lattice. (b) The dual grating shows a very good level of agreement between measured and simulated spectrum.

Fig. 5
Fig. 5

Real and imaginary parts of the dielectric function of the a-Si:H layer determined by spectroscopic ellipsometry.

Tables (1)

Tables Icon

Table 1 Measured absorption and absorption enhancement of a 400 nm thick a-Si:H slab on glass following e-beam patterning. The measurements were integrated over the wavelength range from 600 nm to 750 nm. For comparison the calculated results of a structure consisting of a Ag/Al BR, the a-Si:H slab and a 70 nm Si3N4 ARC are also included (last column). The calculated absorption of the unpatterned film without BR and ARC is 16% instead of the measured 15%, which explains the lower enhancement of the simulated structure.

Metrics