Abstract

Optical antennas have been proposed as an alternative option for solar energy harvesting. In this work the power conversion efficiency of broadband antennas, log-periodic, square-spiral, and archimedian-spiral antennas, coupled to Metal-Insulator-Metal and Esaki rectifying diodes has been obtained from both theoretical and numerical simulation perspectives. The results show efficiencies in the order of 10−6 to 10−9 for these rectifying mechanisms, which is very low for practical solar energy harvesting applications. This is mainly caused by the poor performance of diodes at the given frequencies and also due to the antenna-diode impedance mismatch. If only losses due to antenna-diode impedance mismatch are considered an efficiency of about 10−3 would be obtained. In order to make optical antennas useful for solar energy harvesting new rectification devices or a different harvesting mechanism should be used.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Guy, Consolmagno and Martha W. Schaefer, Worlds Apart: A Textbook in Planetary Sciences (Benjamin Cummings, 1994).
  2. A. Luque, “Solar thermovoltaics: combining solar thermal and photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
    [CrossRef]
  3. L. Fraas, L. Minkin, “TPV History from 1990 to present and future trends,” AIP Conf. Proc. 890, 17–23 (2007).
    [CrossRef]
  4. M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
    [CrossRef]
  5. K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures,” Energies 2(3), 504–530 (2009).
    [CrossRef]
  6. J. Rabaey, Low Power Design Essentials (Springer, 2009).
  7. R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
    [CrossRef]
  8. D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
    [CrossRef]
  9. G. A. E. Vandenbosch, Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
    [CrossRef]
  10. Z. Ma, G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
    [CrossRef]
  11. F. J. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
    [CrossRef]
  12. C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
    [CrossRef]
  13. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, Inc., 1996).
  14. C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
    [CrossRef] [PubMed]
  15. J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
    [CrossRef]
  16. M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
    [CrossRef]
  17. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
    [CrossRef]
  18. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
    [CrossRef]
  19. B. J. Eliasson, “Metal-insulator-metal diodes for solar energy conversion,” Ph.D. Thesis, University of Colorado (2001).
  20. S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
    [CrossRef]
  21. W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
    [CrossRef]
  22. J. N. Schulman, D. H. Chow, “Sb-heterostructure interband backward diodes,” IEEE Electron Device Lett. 21(7), 353–355 (2000).
    [CrossRef]
  23. J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.
  24. N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
    [CrossRef]
  25. P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
    [CrossRef]
  26. J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34(6), 1793–1803 (1963).
    [CrossRef]
  27. L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109(2), 603–604 (1958).
    [CrossRef]
  28. M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11(11), 1611–1621 (1972).
    [CrossRef]
  29. C. Fumeaux, J. Alda, G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24(22), 1629–1631 (1999).
    [CrossRef] [PubMed]
  30. S. M. Sze, R. M. Ryder, “The nonlinearity of the reverse current-voltage characteristics of a p-n junction near avalanche breakdown,” Bell Syst. Tech. J. 46(6), 1135–1139 (1967).
  31. A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
    [CrossRef]
  32. P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
    [CrossRef] [PubMed]
  33. S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).
    [CrossRef]
  34. B. Berland, L. Simpson, G. Nuebel, T. Collins, and B. Lanning, “Optical rectenna for direct conversion of sunlight to electricity,” in Proceedings of the National Center for Photovoltaics Program Review Meeting (NREL, 2001), pp. 323–324.
  35. A. M. Marks, “Lighthing devices with quantum electric/ligth power converters,” USA Patent no. 4,972,094 (1986).
  36. S. Grover, G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. of Photovolt. 1(1), 78–83 (2011).
    [CrossRef]
  37. P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
    [CrossRef]
  38. F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
    [CrossRef]
  39. B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
    [CrossRef]
  40. J. A. Bean, A. Weeks, G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
    [CrossRef]
  41. M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
    [CrossRef]
  42. Garret Moddel, Zixu Zhu, and Sachit Grover, “Solar power conversion using diodes coupled to antennas,” SPIE Newsroom (September 6, 2011).
  43. S. Joshi, Z. Zhu, S. Grover, and G. Moddel, “Infrared optical response of geometric diode rectenna solar cells,” in Proceedings of IEEE Photovoltaic Specialists Conference (PVSC, 2012), pp. 2976–2978.
    [CrossRef]

2013

Z. Ma, G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[CrossRef]

2012

G. A. E. Vandenbosch, Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[CrossRef]

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

2011

J. A. Bean, A. Weeks, G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[CrossRef]

W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
[CrossRef]

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

S. Grover, G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. of Photovolt. 1(1), 78–83 (2011).
[CrossRef]

2010

D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[CrossRef]

2009

K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures,” Energies 2(3), 504–530 (2009).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

2008

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

2007

A. Luque, “Solar thermovoltaics: combining solar thermal and photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
[CrossRef]

L. Fraas, L. Minkin, “TPV History from 1990 to present and future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[CrossRef]

2005

M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
[CrossRef]

F. J. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

2004

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

2002

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[CrossRef]

2000

J. N. Schulman, D. H. Chow, “Sb-heterostructure interband backward diodes,” IEEE Electron Device Lett. 21(7), 353–355 (2000).
[CrossRef]

1999

1998

C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[CrossRef]

1997

1994

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
[CrossRef]

1978

M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
[CrossRef]

1975

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).
[CrossRef]

1972

M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11(11), 1611–1621 (1972).
[CrossRef]

1967

S. M. Sze, R. M. Ryder, “The nonlinearity of the reverse current-voltage characteristics of a p-n junction near avalanche breakdown,” Bell Syst. Tech. J. 46(6), 1135–1139 (1967).

1963

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34(6), 1793–1803 (1963).
[CrossRef]

1958

L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109(2), 603–604 (1958).
[CrossRef]

Alda, J.

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

C. Fumeaux, J. Alda, G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24(22), 1629–1631 (1999).
[CrossRef] [PubMed]

Araki, K.

M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
[CrossRef]

Baker, J. H.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Bean, J. A.

J. A. Bean, A. Weeks, G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Bergeson, J. D.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Bernstein, G. H.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

Berry, J. J.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Boegeman, Y. K.

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

Boreman, G.

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

F. J. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

Boreman, G. D.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

J. A. Bean, A. Weeks, G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[CrossRef]

C. Fumeaux, J. Alda, G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24(22), 1629–1631 (1999).
[CrossRef] [PubMed]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
[CrossRef] [PubMed]

Bosco, B. A.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Bozzetti, M.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

Chow, D. H.

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

J. N. Schulman, D. H. Chow, “Sb-heterostructure interband backward diodes,” IEEE Electron Device Lett. 21(7), 353–355 (2000).
[CrossRef]

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Corkish, R.

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[CrossRef]

Croke, E. T.

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Cromar, M.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Dameron, A. A.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Davis, C. F.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
[CrossRef]

Deelman, P.

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

Dolph, M. C.

W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
[CrossRef]

Dunlap, H. L.

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Ekins-Daukes, N.

M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
[CrossRef]

Eliasson, B.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Esaki, L.

L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109(2), 603–604 (1958).
[CrossRef]

Fan, W.

W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
[CrossRef]

Fay, P.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

Forsyth, K.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Fraas, L.

L. Fraas, L. Minkin, “TPV History from 1990 to present and future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[CrossRef]

Fumeaux, C.

Gallo, M.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

Ginley, D. S.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Ginn, J.

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

González, F. J.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

F. J. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

Green, M. A.

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[CrossRef]

Grover, S.

S. Grover, G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. of Photovolt. 1(1), 78–83 (2011).
[CrossRef]

Gustafson, T. K.

M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).
[CrossRef]

Hagerty, J. A.

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

Heiblum, M.

M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

Helmbrecht, F. B.

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

Herrmann, W.

C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
[CrossRef] [PubMed]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
[CrossRef]

Holabird, K. S.

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Izawa, T.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).
[CrossRef]

Javan, A.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
[CrossRef]

Kneubuehl, F. K.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
[CrossRef]

Kneubühl, F.

C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[CrossRef]

Kneubühl, F. K.

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[CrossRef]

Krenz, P. M.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

Lim, D.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Liu, K. C.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
[CrossRef]

Losito, O.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

Lu, J.

W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
[CrossRef]

Luque, A.

A. Luque, “Solar thermovoltaics: combining solar thermal and photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
[CrossRef]

Ma, Z.

Z. Ma, G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[CrossRef]

G. A. E. Vandenbosch, Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[CrossRef]

McCalpin, W. H.

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

Mescia, L.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

Minkin, L.

L. Fraas, L. Minkin, “TPV History from 1990 to present and future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[CrossRef]

Moddel, G.

S. Grover, G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. of Photovolt. 1(1), 78–83 (2011).
[CrossRef]

Morgan, M. A.

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Nagae, M.

M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11(11), 1611–1621 (1972).
[CrossRef]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[CrossRef]

O’Hayre, R. P.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Oppliger, Y.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
[CrossRef]

Orlov, A. O.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

Parilla, P. A.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Periasamy, P.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[CrossRef]

Popovic, Z. B.

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

Porod, W.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Prudenzano, F.

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

Puzzer, T.

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[CrossRef]

Rajavel, R.

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

Rockwell, S.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

Rothuizen, H.

C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
[CrossRef] [PubMed]

Ryder, R. M.

S. M. Sze, R. M. Ryder, “The nonlinearity of the reverse current-voltage characteristics of a p-n junction near avalanche breakdown,” Bell Syst. Tech. J. 46(6), 1135–1139 (1967).

Sanchez, A.

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
[CrossRef]

Schulman, J. N.

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

J. N. Schulman, D. H. Chow, “Sb-heterostructure interband backward diodes,” IEEE Electron Device Lett. 21(7), 353–355 (2000).
[CrossRef]

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Shihyuan, W.

M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

Simmons, J. G.

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34(6), 1793–1803 (1963).
[CrossRef]

Simón, J.

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[CrossRef]

Su, N.

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

Szakmany, G.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

Sze, S. M.

S. M. Sze, R. M. Ryder, “The nonlinearity of the reverse current-voltage characteristics of a p-n junction near avalanche breakdown,” Bell Syst. Tech. J. 46(6), 1135–1139 (1967).

Takamoto, T.

M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
[CrossRef]

Tanabe, K.

K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures,” Energies 2(3), 504–530 (2009).
[CrossRef]

Thomas, S.

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

Tiwari, B.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

Vandenbosch, G. A. E.

Z. Ma, G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[CrossRef]

G. A. E. Vandenbosch, Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[CrossRef]

Wang, S. Y.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).
[CrossRef]

Weeks, A.

J. A. Bean, A. Weeks, G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[CrossRef]

Weinreb, S.

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

Whinnery, J. R.

M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

Wilke, I.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
[CrossRef]

Wolf, A.

W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
[CrossRef]

Zane, R.

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

Adv. Mater.

P. Periasamy, J. J. Berry, A. A. Dameron, J. D. Bergeson, D. S. Ginley, R. P. O’Hayre, P. A. Parilla, “Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,” Adv. Mater. 23(27), 3080–3085 (2011).
[CrossRef] [PubMed]

AIP Conf. Proc.

A. Luque, “Solar thermovoltaics: combining solar thermal and photovoltaics,” AIP Conf. Proc. 890, 3–16 (2007).
[CrossRef]

L. Fraas, L. Minkin, “TPV History from 1990 to present and future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).
[CrossRef]

W. Fan, M. C. Dolph, J. Lu, A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization,” Appl. Phys. Lett. 99(25), 252101 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys., A Mater. Sci. Process. 58, 329–341 (1994).
[CrossRef]

Bell Syst. Tech. J.

S. M. Sze, R. M. Ryder, “The nonlinearity of the reverse current-voltage characteristics of a p-n junction near avalanche breakdown,” Bell Syst. Tech. J. 46(6), 1135–1139 (1967).

Energies

K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures,” Energies 2(3), 504–530 (2009).
[CrossRef]

Energy

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, F. Prudenzano, “Design of optical antenna for solar energy collection,” Energy 39(1), 27–32 (2012).
[CrossRef]

IEEE Electron Device Lett.

J. N. Schulman, D. H. Chow, “Sb-heterostructure interband backward diodes,” IEEE Electron Device Lett. 21(7), 353–355 (2000).
[CrossRef]

N. Su, R. Rajavel, P. Deelman, J. N. Schulman, P. Fay, “Sb-heterostructure millimeter-wave detectors with reduced capacitance and noise equivalent power,” IEEE Electron Device Lett. 29(6), 536–539 (2008).
[CrossRef]

P. Fay, J. N. Schulman, S. Thomas, D. H. Chow, Y. K. Boegeman, K. S. Holabird, “High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection,” IEEE Electron Device Lett. 23(10), 585–587 (2002).
[CrossRef]

IEEE J. of Photovolt.

S. Grover, G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. of Photovolt. 1(1), 78–83 (2011).
[CrossRef]

IEEE J. Quantum Electron.

P. M. Krenz, B. Tiwari, G. Szakmany, A. O. Orlov, F. J. González, G. D. Boreman, W. Porod, “Response increase of IR antenna-coupled thermocouple using impedance matching,” IEEE J. Quantum Electron. 48(5), 659–664 (2012).
[CrossRef]

M. Heiblum, W. Shihyuan, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

J. A. Bean, A. Weeks, G. D. Boreman, “Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors,” IEEE J. Quantum Electron. 47(1), 126–135 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024 (2004).
[CrossRef]

Infrared Phys. Technol.

F. J. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[CrossRef]

F. J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009).
[CrossRef]

J. Appl. Phys.

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34(6), 1793–1803 (1963).
[CrossRef]

A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49(10), 5270–5277 (1978).
[CrossRef]

J. Sol. Energy Eng.

D. K. Kotter, S. D. Novack, W. D. Slafer, P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[CrossRef]

J. Vac. Sci. Technol. B

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

B. Tiwari, J. A. Bean, G. Szakmany, G. H. Bernstein, P. Fay, W. Porod, “Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(5), 2153–2160 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11(11), 1611–1621 (1972).
[CrossRef]

Nano Energy

G. A. E. Vandenbosch, Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[CrossRef]

Opt. Lett.

Phys. Rev.

L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109(2), 603–604 (1958).
[CrossRef]

Sol. Energy

Z. Ma, G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[CrossRef]

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73(6), 395–401 (2002).
[CrossRef]

M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energy 79(1), 78–85 (2005).
[CrossRef]

Other

J. Rabaey, Low Power Design Essentials (Springer, 2009).

J. Guy, Consolmagno and Martha W. Schaefer, Worlds Apart: A Textbook in Planetary Sciences (Benjamin Cummings, 1994).

B. J. Eliasson, “Metal-insulator-metal diodes for solar energy conversion,” Ph.D. Thesis, University of Colorado (2001).

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Radio Frequency Integrated Circuits Symposium, 171–174 (2007).
[CrossRef]

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, Inc., 1996).

J. N. Schulman, E. T. Croke, D. H. Chow, H. L. Dunlap, K. S. Holabird, M. A. Morgan, S. Weinreb, “Quantum tunneling Sb-heterostructure millimeter-wave diodes,” in Proceedings of IEEE International Electron Devices Meeting (2001), pp. 765–7667.

B. Berland, L. Simpson, G. Nuebel, T. Collins, and B. Lanning, “Optical rectenna for direct conversion of sunlight to electricity,” in Proceedings of the National Center for Photovoltaics Program Review Meeting (NREL, 2001), pp. 323–324.

A. M. Marks, “Lighthing devices with quantum electric/ligth power converters,” USA Patent no. 4,972,094 (1986).

Garret Moddel, Zixu Zhu, and Sachit Grover, “Solar power conversion using diodes coupled to antennas,” SPIE Newsroom (September 6, 2011).

S. Joshi, Z. Zhu, S. Grover, and G. Moddel, “Infrared optical response of geometric diode rectenna solar cells,” in Proceedings of IEEE Photovoltaic Specialists Conference (PVSC, 2012), pp. 2976–2978.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Equivalent circuit model of an antenna-coupled square-law rectifying tunnel diode.

Fig. 2
Fig. 2

Broad-band optical antennas, a) log-periodic antenna, b) square-spiral antenna and c) Archimedean-spiral antenna.

Fig. 3
Fig. 3

Induced voltage by the three broadband optical antennas: a log-periodic, a square and an Archimedean spiral antenna.

Fig. 4
Fig. 4

Rectified signal of the broadband optical antennas, a log-periodic, a square and an Archimedean spiral, when coupled to a) Al/Al2O3/Pt MIM and b) n-InAs/AlSb/p-GaSb Esaki tunnel diodes.

Fig. 5
Fig. 5

Conversion efficiency of broad band optical antennas. A log-periodic, a square and an Archimedean spiral coupled to (a) Al/Al2O3/Pt MIM and (b) n-InAs/AlSb/p-GaSb Esaki tunnel diodes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I DC = γ | v D | 2 4 R D ,
v D 2 = V 2 x 2 1+2x+(1+ (ω C D R A ) 2 ) x 2 .
f C = 1 2πRC = R A + R D 2π R A R D C D .
η e = P DC P = I DC 2 R D P .

Metrics