Abstract

We propose an ultrathin solar cell architecture design which incorporates two periodic layers of metallic and dielectric gratings. Both layers couple the incident light to photonic and plasmonic modes, thus increasing absorption within the cell. The relative position between the two gratings is examined, and is shown to have significant impact on absorption. A lateral shift between the two layers introduces structural asymmetry, and enables coupling of the incident field to optically dark photonic modes. Furthermore, the lateral shift influences mode interactions. Current density enhancement is calculated under AM1.5G solar illumination, and is found to reach a value of 1.86. The structure proposed is optimized and compared to solar cells with a single layer of metallic or dielectric nanostructures.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Morton, “Solar energy: A new day dawning? Silicon valley sunrise,” Nature 443(7107), 19–22 (2006).
    [CrossRef] [PubMed]
  2. M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
    [CrossRef]
  3. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  4. V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  6. Y. A. Akimov, W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
    [CrossRef]
  7. J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  8. J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [CrossRef] [PubMed]
  9. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
    [CrossRef]
  10. H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [CrossRef]
  11. H. R. Stuart, D. G. Hall, “Island effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [CrossRef]
  12. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
    [CrossRef]
  13. F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
    [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  15. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
    [CrossRef]
  16. A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
    [CrossRef]
  17. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19(S1Suppl 1), A64–A71 (2011).
    [CrossRef] [PubMed]
  18. C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [CrossRef]
  19. B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
    [CrossRef]
  20. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  21. V. E. Ferry, A. Polman, H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).
  22. M. A. Sefunc, A. K. Okyay, H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
    [CrossRef]
  23. H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
    [CrossRef] [PubMed]
  24. D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
    [CrossRef] [PubMed]
  25. A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
    [CrossRef]
  26. S. Hajimirza, J. Howell, “Inverse optimization of plasmonic and antireflective grating thin film PV cells,” J. Phys. Conf. Ser. 369, 012015 (2012).
    [CrossRef]
  27. L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
    [CrossRef]
  28. A. Yanai, U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B 27(8), 1523–1529 (2010).
    [CrossRef]
  29. V. Ganapati, O. D. Miller, and E. Yablonovitch, “Spontaneous symmetry breaking in the optimization of subwavelength solar cell textures for light trapping,” in Photovoltaic Specialist Conference, 38th IEEE, 001572–001576 (IEEE, 2012).
    [CrossRef]
  30. V. Liu, M. Povinelli, S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
    [CrossRef] [PubMed]
  31. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
    [CrossRef] [PubMed]
  32. T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
    [CrossRef]
  33. W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
    [CrossRef]
  34. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  35. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. M. A. Green, M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
    [CrossRef]
  38. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  39. National renewable energy laboratory (NREL), National solar radiation database, 1991–2010 update. http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/

2012 (4)

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

S. Hajimirza, J. Howell, “Inverse optimization of plasmonic and antireflective grating thin film PV cells,” J. Phys. Conf. Ser. 369, 012015 (2012).
[CrossRef]

2011 (12)

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, A. Polman, H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).

M. A. Sefunc, A. K. Okyay, H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011).
[CrossRef] [PubMed]

I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19(S1Suppl 1), A64–A71 (2011).
[CrossRef] [PubMed]

Y. A. Akimov, W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

2010 (5)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

A. Yanai, U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B 27(8), 1523–1529 (2010).
[CrossRef]

2009 (3)

V. Liu, M. Povinelli, S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

2008 (5)

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

2006 (1)

O. Morton, “Solar energy: A new day dawning? Silicon valley sunrise,” Nature 443(7107), 19–22 (2006).
[CrossRef] [PubMed]

2004 (1)

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

1998 (1)

H. R. Stuart, D. G. Hall, “Island effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

1996 (2)

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
[CrossRef]

1995 (2)

Abass, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov, W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

Alù, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

V. E. Ferry, A. Polman, H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Berkovitch, N.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Bhattacharya, J.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

Biswas, R.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Burgelman, M.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Cesario, J.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

Chakravarty, N.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

Chen, W. V.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Consales, M.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Crescitelli, A.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Cusano, A.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Cutolo, A.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Dalal, V. L.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

Demir, H. V.

M. A. Sefunc, A. K. Okyay, H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Derkacs, D.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

Dewan, R.

Diukman, I.

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Esposito, E.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Fainman, Y.

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

Fan, S.

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, A. Polman, H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Frenner, K.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Fu, L.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Galdi, V.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Gaylord, T. K.

Giessen, H.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Granata, C.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Grann, E. B.

Green, M. A.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

M. A. Green, M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Hajimirza, S.

S. Hajimirza, J. Howell, “Inverse optimization of plasmonic and antireflective grating thin film PV cells,” J. Phys. Conf. Ser. 369, 012015 (2012).
[CrossRef]

Hall, D. G.

H. R. Stuart, D. G. Hall, “Island effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Howell, J.

S. Hajimirza, J. Howell, “Inverse optimization of plasmonic and antireflective grating thin film PV cells,” J. Phys. Conf. Ser. 369, 012015 (2012).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Kawata, S.

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Keevers, M. J.

M. A. Green, M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[CrossRef]

Knipp, D.

Koh, W. S.

Y. A. Akimov, W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

Kuipers, L.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

Lalanne, P.

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Le, K. Q.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

le Feber, B.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

Levy, U.

Lim, S. H.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Liu, V.

Madzharov, D.

Maes, B.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

H. Shen, B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express 19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Matheu, P. M.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Moharam, M. G.

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Morris, G. M.

Morton, O.

O. Morton, “Solar energy: A new day dawning? Silicon valley sunrise,” Nature 443(7107), 19–22 (2006).
[CrossRef] [PubMed]

Munday, J. N.

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Nakagawa, W.

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

Okamoto, T.

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Okyay, A. K.

M. A. Sefunc, A. K. Okyay, H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Orenstein, M.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Osten, W.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Pattnaik, S.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Pillai, S.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

Polman, A.

V. E. Ferry, A. Polman, H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Pommet, D. A.

Povinelli, M.

Ricciardi, A.

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Rotenberg, N.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Schau, P.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Schropp, R. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Schweizer, H.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Sefunc, M. A.

M. A. Sefunc, A. K. Okyay, H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Shen, H.

Simon, J. J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Simonen, J.

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Slafer, W. D.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

Stuart, H. R.

H. R. Stuart, D. G. Hall, “Island effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Tessler, N.

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Tzabari, L.

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Weiss, T.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Yanai, A.

Yu, E. T.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

Yu, P. K. L.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Zeijlemaker, H.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

ACS Nano (1)

V. E. Ferry, A. Polman, H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011).

Adv. Funct. Mater. (1)

A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, A. Cusano, “Nanostructured metallo-dielectric quasi crystals: towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater. 22(20), 4389–4398 (2012).
[CrossRef]

Adv. Mater. (3)

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancement,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (8)

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

H. R. Stuart, D. G. Hall, “Island effects in nanoparticle enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle induced light scattering for improved performance of quantum well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk Plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett. 98(20), 201108 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, H. V. Demir, “Volumetric plasmonic resonator architecture for thin film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Nakagawa, Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

S. Hajimirza, J. Howell, “Inverse optimization of plasmonic and antireflective grating thin film PV cells,” J. Phys. Conf. Ser. 369, 012015 (2012).
[CrossRef]

Nano Lett. (4)

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

Nature (1)

O. Morton, “Solar energy: A new day dawning? Silicon valley sunrise,” Nature 443(7107), 19–22 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (3)

A. Abass, K. Q. Le, A. Alù, M. Burgelman, B. Maes, “Dual interface grating for broadband absorption enhancement in thin film solar cells,” Phys. Rev. B 85(11), 115449 (2012).
[CrossRef]

T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Plasmonics (1)

Y. A. Akimov, W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Other (3)

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Spontaneous symmetry breaking in the optimization of subwavelength solar cell textures for light trapping,” in Photovoltaic Specialist Conference, 38th IEEE, 001572–001576 (IEEE, 2012).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

National renewable energy laboratory (NREL), National solar radiation database, 1991–2010 update. http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of (a) single top grating, (b) single bottom grating, and (c) dual grating solar cells.

Fig. 2
Fig. 2

Optimization procedure of single grating solar cells. Short circuit current density enhancement is shown for single grating structures with periodicity of 425nm, as a function of height and width of the gratings under randomly polarized light at incident angle for (a) top and (b) bottom grating cells. (a) and (b) are illustrated in the same color scale. The optimal width and height are found for each grating period, and the maximal short circuit current density is presented as a function of the period, for (c) top and (d) bottom grating structures.

Fig. 3
Fig. 3

Absorption enhancement as a function of wavelength and grating wavenumber for (a, d) top, (b, e) bottom and (c, f) dual grating structure, under TE and TM illuminations at incident angle. The bottom grating structure consists of a metallic Ag-Si grating of 30nm height and a duty cycle of 0.282; and the top grating structure consists of a dielectric ITO-Si grating of 80nm height and of a duty cycle of 0.235. The dual grating structure includes both a top and bottom gratings, with the following parameters: 60nm top grating height, 0.188 top grating duty cycle, 30nm bottom grating height, 0.259 bottom grating duty cycle. The circles on the plots correspond to analytically solved propagating waveguide modes, and to their repetitions at higher orders. (a-f) appear in the same color scale.

Fig. 4
Fig. 4

Normalized and time averaged magnetic field intensity distribution for TM illumination for: (a) a bare solar cell with no grating structure, at 640nm wavelength; (b) bottom grating solar structure at 640nm wavelength; (c) bottom grating structure at 1050nm wavelength. The figures all appear in the same color scale. Plots (b) and (c) demonstrate strong light confinement in the presence of the grating structures, due to the coupling of the incident radiation to guided and localized modes, respectively. The grating parameters used for these plots are: grating period L = 425nm, grating height H = 30nm and grating width W = 110nm.

Fig. 5
Fig. 5

Absorption enhancement as a function of wavelength and of the lateral shift between the two gratings for (a) TE and (b) TM polarized light, both at incident angle. Same color scale is used for both figures. (c) and (d) present the short circuit current density enhancement as a function of lateral shift for TE and TM, respectively.

Fig. 6
Fig. 6

Short circuit current density enhancement as a function of the incident angle for the optimized dual grating structure, under TE and TM polarized illumination.

Fig. 7
Fig. 7

Short circuit current density enhancement as a function of the relative lateral shift S/L for the grating structure of [23], under normal incidence. The maximum shift of 0.5 is determined by the symmetry of the structure. As shown, this shift is not optimal.

Fig. 8
Fig. 8

2D grating simulations under normal incidence. (a) Absorption enhancement as a function of wavelength and of grating wavenumber for the dual grating structure. The parameters of the dual grating structure examined are: top grating height of 30 nm, top grating duty cycles of 0.188, bottom grating height of 40 nm and bottom grating duty cycles of 0.259. (b) Integrated short circuit current density as a function of grating wavenumber for the same dual grating structure.

Metrics